
이학박사 학위논문

Cryptographic Shuffles and
Their Applications

(암호학적 셔플과 그 응용)

2012년 8월

서울대학교 대학원

수리과학부

김명선

Cryptographic Shuffles and
Their Applications

(암호학적 셔플과 그 응용)

지도교수 천정희

이 논문을 이학박사 학위논문으로 제출함

2012년 5월

서울대학교 대학원

수리과학부

김명선

김명선의 이학박사 학위논문을 인준함

2012년 6월

위 원 장 (인)

부 위 원 장 (인)

위 원 (인)

위 원 (인)

위 원 (인)

Cryptographic Shuffles and
Their Applications

A dissertation

submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

to the faculty of the Graduate School of

Seoul National University

by

Myungsun Kim

Dissertation Director : Professor Jung Hee Cheon

Department of Mathematical Sciences

Seoul National University

August 2012

c© 2012 Myungsun Kim

All rights reserved.

Abstract

Cryptographic Shuffles and
Their Applications

Myungsun Kim

Department of Mathematical Sciences

The Graduate School

Seoul National University

For anonymization purposes, one can use a mix-net. A mix-net is a multi-

party protocol to shuffle elements so that neither of the parties knows the

permutation linking the input and output. One way to construct a mix-net

is to let a set of mixers, so called mix-servers, take turns in permuting and

re-encrypting or decrypting the inputs. If at least one of the mixers is honest,

the input data and the output data can no longer be linked. In this role,

shuffling constitutes an important building block in anonymization protocols

and voting schemes. The problem is that the standard shuffle requires anyone

who shuffles the input messages to keep his random permutation and ran-

domizers secret. The assumption of a party keeping the secret information

may be in some ways quite strong.

Secondly, for this anonymization guarantee to hold we do need to ensure

that all mixers act according to the protocol. In general, zero-knowledge

proofs (ZKPs) are used for this purpose. However, ZKPs requires the expen-

sive cost in the light of computation and communication.

In TCC 2007, Adida and Wikström proposed a novel approach to shuf-

fle, called a public shuffle, in which a shuffler can perform shuffle publicly

i

without needing information kept secret. Their scheme uses an encrypted

permutation matrix to shuffle ciphertexts publicly. This approach signifi-

cantly reduces the cost of constructing a mix-net to verifiable joint decryp-

tion. Though their method is successful in making shuffle to be a public

operation, their scheme still requires that some trusted parties should choose

a permutation to be encrypted and construct zero-knowledge proofs on the

well-formedness of this permutation.

In this dissertation, we study a method to construct a public shuffle with-

out relying on permutations generated privately: Given an n-tuple of cipher-

text (c1, . . . , cn), our shuffle algorithm computes fi(c1, . . . , cn) for i = 1, . . . , `

where each fi(x1, . . . , xn) is a symmetric polynomial in x1, . . . , xn. Depend-

ing on the symmetric polynomials we use, we propose two concrete construc-

tions. One is to use ring homomorphic encryption with a constant ciphertext

complexity and the other is to use simple ElGamal encryption with a linear

ciphertext complexity in the number of users. Both constructions are free of

zero-knowledge proofs and publicly verifiable.

Key words: Shuffle, Verifiable Secret Shuffle, Public Shuffle, Mix-net, El-

Gamal Encryption

Student Number: No. 20008-30081

ii

Contents

Abstract i

1 Introduction 1

1.1 A Brief History of Shuffles . 1

1.2 Why Shuffling in Public Hard? 2

1.3 Cryptographic Shuffle Schemes 4

1.4 Contributions of This Work 6

1.4.1 Our Definitional Approach 6

1.4.2 Our Constructions . 6

1.5 Organization . 8

2 Preliminaries 9

2.1 Basics . 9

2.2 Public Key Encryption . 10

2.2.1 IND-CPA Security . 11

2.2.2 IND-CCA Security . 14

2.3 Homomorphic Public-key Encryption 15

2.4 Zero-Knowledge Proofs . 18

2.4.1 Zero-Knowledge Variants 19

2.4.2 Proof of Knowledge . 20

iii

CONTENTS

2.5 Public-Key Obfuscation . 21

3 Verifiable Secret Shuffles: A Review 24

3.1 Introduction . 24

3.2 Notation and Definitions . 25

3.3 Security . 27

3.3.1 Verifiability for Secret Shuffles 27

3.3.2 Unlinkability Experiments 28

3.4 Selected Prior Work . 29

3.4.1 Furukawa-Sako Protocol 30

3.4.2 Groth Protocol . 31

3.5 Public Shuffles with Private Permutation 33

3.5.1 Introduction . 33

3.5.2 Adida and Wikström Protocol 33

4 Verifiable Public Shuffles 36

4.1 Introduction . 36

4.2 Generalized Shuffle . 38

4.2.1 Syntax of Generalized Shuffle 38

4.2.2 Security Model . 39

4.2.3 Cryptographic Assumption 43

4.3 Constructions from Ring Homomorphic Encryption 44

4.3.1 Construction from
((

n
bn/2c

)
, n− 1

)
-E 44

4.3.2 Construction from (1, n)-E 45

4.4 Constructions from Group Homomorphic Encryption 47

4.4.1 Building Blocks . 47

4.4.2 A Generalized Public Shuffle Scheme Based on Poly-

nomial Factorization 50

iv

CONTENTS

4.4.3 A Generalized Public Shuffle Scheme Based on Integer

Factorization . 58

5 Conclusion and Further Work 63

Abstract (in Korean) 72

Acknowledgement (in Korean) 74

v

Chapter 1

Introduction

We begin with a history of shuffles and related technology, focusing specifi-

cally on the introduction of the verifiable schemes. Details can be also found

in the work of Nguyen et al. [NSK04] and their journal version [NSK06].

1.1 A Brief History of Shuffles

A number of efficient constructions for verifiable shuffles have been pro-

posed [Abe98, Abe99, FS01, Nef01, FMM+02, Nef03, Fur05, Wik05, GL07,

Wik09, BG12]. In Crypto 2001, Furukawa and Sako [FS01] gave a char-

acterization of permutation matrices in terms of two equations that could

be efficiently proved, hence proposing an efficient verifiable shuffle with a

3-round proof system. However, the zero-knowledge property of the proof

system remains an open problem. Furukawa et al. [FMM+02] noted a flaw

in their original proof, proposed a new definition of security for shuffles and

proved security of their system with respect to that definition. Neff later

gave another efficient construction [Nef01], which was based on a generaliza-

tion of Chaum-Pedersen proof of knowledge of equality of discrete logarithms

1

CHAPTER 1. INTRODUCTION

and the fact that a polynomial of degree n has at most n roots [CP92]. An

improved version of this proof system is given in [Nef03]. However, like the

Furukawa-Sako scheme, the zero-knowledge property of the Neff proof sys-

tem has not been correctly proved and still remains an open problem. All

these schemes use the El Gamal cryptosystem and their security relies on

the discrete logarithm assumption. Based on Neff’s method, Groth [Gro03]

proposed a very efficient proof system that uses homomorphic commitments.

The input ciphertexts in this scheme can be encrypted by any homomorphic

cryptosystem. More recently, Bayer and Groth [BG12] proposed a verifiable

secret shuffle with only sublinear size in the number of senders.

However, all of these shuffle schemes has the common crucial drawbacks

as follows: (1) Each shuffle scheme should rely on the secrecy of permutation

and randomness; (2) For public verifiability, zero-knowledge proof techniques

extensively should be employed, whose cost is usually expensive with respect

to computation and communication. As a more or less direct consequence,

Adida and Wikström [AW07] proposed a way to shuffle the ciphertexts in

public. Later Parampalli et al. [PRT12] improved the computational effi-

ciency.

1.2 Why Shuffling in Public Hard?

The main security objective of a shuffle is to provide unlinkability of its

input elements to output elements, and so effectively keeping the permuta-

tion secret. A second important property of shuffles is verifiability: that is

providing a proof that the output is correctly constructed. Verifiability of

shuffles is used to provide robustness for mix-nets: that is ensuring that a

mix-net works correctly even if a number of its mix-centrers are malicious. If

2

CHAPTER 1. INTRODUCTION

a shuffle’s proof can be verified by any party, it allows the mix-net to provide

public verifiability: that means the mix-net can prove its correct operation to

any party. These are important properties of mix-nets and so verifiability of

shuffles has received much attention. Shuffles must be efficient and the cost

is measured in terms of computation and communication (number of rounds

and communicated bits). Proving security properties of shuffles traditionally

relied on proving the zero-knowledgeness of the underlying proof system.

In contrast, in [AW07] shuffles are precomputed with a random permuta-

tion and randomizers and published in public together with zero-knowledge

proofs. Although shuffling can be run in public, secret information used in

precomputing must be assumed to be kept secret. In order to find the pos-

sibility of removing the secret information that precomputing shuffles needs

to use, we consider homomorphic tallying since only public computation is

required for the anonymization process. Indeed, Benaloh and Yung [BY86]

proposed a Yes/No voting scheme using homomorphic tallying. However, ho-

momorphic tallying cannot recover the individual input plaintexts. This can

be problematic in some cases including write-in votes. One feasible solution

is to encode input messages into primes before encrypting them. However,

this way has two limitations: (1) The ciphertext space should be large; (2)

Recovering the original messages (e.g., by using factorization over Z) may

require exponential computation complexity. In this paper, we give verifiable

public shuffles that require only public computation, and support the original

message recovery in polynomial time.

3

CHAPTER 1. INTRODUCTION

1.3 Cryptographic Shuffle Schemes

The idea of a shuffle was introduced by Chaum [Cha81] but he did not give

any method to guarantee the correctness. Many suggestions had been made

how to build mix-nets or prove the correctness of a shuffle since then, but

many of these approaches have been partially or fully broken, and the remain-

ing schemes sometimes suffer from other drawbacks. The scheme of Desmedt

and Kurosawa [DK00] assumed that only a small number of mix-servers are

corrupt. The approach of Jakobson, Juels, and Rivest [JJR02] needed a

relatively big number of mix-server to minimize the risk of tampering with

messages or compromising privacy of the senders. Peng et al. [PBDV04] re-

strained the class of possible permutations and also required that a part of

the senders are honest. None of these drawbacks are suffered by the shuf-

fle scheme of Wikström [Wik02] and approaches based on zero-knowledge

arguments.

Early contributions using zero-knowledge arguments were made by Sako

and Killian [SK95] and Abe [Abe98, Abe99, AH01]. Furukawa and Sako [FS01]

and Neff [Nef01, Nef03] proposed the first shuffles for ElGamal encryption

with a complexity that depends linearly on the number of ciphertexts. Fu-

rukawa and Sako’s approach is based on permutation matrices and has been

refined further [Fur05, GL07]. Furukawa, Miyachi, Mori, Obana and Sako [FMM+02]

presented an implementation of a shuffle argument based on permutation

matrices and tested it on mix-nets handling 100, 000 ElGamal ciphertexts.

Recently, Furukawa and Sako [FMS10] have reported on another implemen-

tation based on elliptic curve groups.

Wikström [Wik09] also used the idea of permutation matrices and sug-

gested a shuffle argument which splits in an offline and online phase. Fur-

thermore, Terelius and Wikström [TW10] constructed conceptually simple

4

CHAPTER 1. INTRODUCTION

shuffle arguments that allowed the restriction of the shuffles to certain classes

of permutations. Both protocols are implemented in the Verificatum mix-net

library [Wik10].

Neff’s approach [Nef01] is based on the invariance of polynomials under

permutation of the roots. This idea was picked up by Groth who suggested

a perfect honest verifier zero-knowledge protocol [Gro10]. Stamer [Sta05]

reported on an implementation of this scheme. Later Groth and Ishai [GI08]

proposed the first shuffle argument where the communication complexity is

sublinear in the number of ciphertexts

The goal of shuffling in public is the public-key obfuscation of the shuffle

phase of a mix-net comprising either a decryption shuffle or re-encryption

shuffle functionality (program) [AW07]. Informally, a public-key obfuscator

O takes a program F and outputs a new program O(F) which outputs

encryptions of F ’s outputs. That is ∃ �,∀xO(F) � x = O(F(x)) for some

encryption function O and we say the operator � evaluates the obfuscated

program on input x. A formal model is proposed in Definition 3 [AW07] which

builds upon an earlier definition by Ostrovsky and Skeith [OS05]. Adida and

Wikström present obfuscators for decryption and re-encryption shuffles in

the BGN [BGN05] and Paillier [Pai99] cryptosystems respectively. They also

proved that their obfuscators are semantically secure (Definition 4 [AW07]).

Given a set of parties who sample and obfuscate a shuffle before any input

is received, one can construct a mix-net provided that joint decryption is

verifiable.

5

CHAPTER 1. INTRODUCTION

1.4 Contributions of This Work

This dissertation contributes to the practice and theory of cryptographic

shuffles, which are twofolds: (1) Definitions; (2) Concrete constructions.

Also, each contribution attempts to make cryptographic shuffles more useful

and realistic.

1.4.1 Our Definitional Approach

In [NSK04], the authors define a shuffle over a re-randomizable public-key

cryptosystem as a polynomial-time algorithm that takes a set of n input

ciphertexts and a random permutation, and outputs a set of n output ci-

phertexts. Other later definitions do not make a big difference from this.

As we will show later, this definition seems too restrictive to exploit all pos-

sibilities for achieving a construction that roughly corresponds to our goal.

Our definitional approach consists of two steps. First, we relax the restric-

tion that the number of output ciphertexts should be equal to that of input

ciphertexts. We call it generalized shuffle. Our interpretation of verifiable

secret shuffles is that they play a role of hiding the order of input ciphertexts

using a secret permutation and a fresh randomness. Our verifiable public

shuffles however remove the order of input ciphertexts itself. We formally

define this concept. Then, we formally describe what means by a secure

shuffle with respect to verifiability and unlinkability (in [NSK04] the authors

called it shuffle privacy).

1.4.2 Our Constructions

Our construction of verifiable public shuffles consists of two steps. First,

we show how construct a verifiable public shuffle from a ring homomorphic

6

CHAPTER 1. INTRODUCTION

cryptosystem. We would like to stress that if we assume a ring homomorphic

cryptosystem, this construction is a more or less straightforward result, and

therefore may seem obvious in hindsight, but it is actually non-trivial as long

as a group homomorphic cryptosystem is concerned. Then, we show how to

construct public shuffle schemes from a group homomorphic cryptosystem.

Our idea is to use a homomorphic encryption Enc on a Unique Factoriza-

tion Domain (UFD) R and symmetric polynomials f1, . . . , f` ∈ R[x1, . . . , xn]

satisfying

fi(Encpk(m1), . . . ,Encpk(mn)) = Encpk(fi(m1, . . . ,mn))

for m1, . . . ,mn ∈ R. Given an n-tuple of ciphertexts (c1, . . . , cn) with ci =

Encpk(mi), our shuffle algorithm outputs fi(c1, . . . , cn) = Encpk(fi(m1, . . . ,mn))

for i = 1, . . . , `. This output is not a shuffle of (c1, . . . , cn), but plays the same

role with it, i.e. their decryption can be transformed into the set of origi-

nal messages {m1, . . . ,mn} using factorization on R[x], which is a UFD. It is

easy to see that this shuffle provides unlinkability between inputs and outputs

because a permutation of inputs does not result in changes of the output of

shuffle.

Using a ring homomorphic cryptosystem, we can construct a public shuf-

fle with O(1) ciphertext complexity in the number of senders. However,

ring homomorphic cryptosystems are highly expensive and not practical yet.

Thus, we construct public shuffles using a group homomorphic encryption–

ElGamal encryption, at the cost of O(n) ciphertext complexity. Note that

a basic public shuffle without relying on a trusted third party yields O(n2)

ciphertext complexity where n is the number of senders.

Our construction using a ring homomorphic encryption has O(`)(E +

D) +O(n2 log p)MFp computational complexity, where E, D, and MFp denote

the cost of encryption, decryption and multiplication in Fp, respectively.

7

CHAPTER 1. INTRODUCTION

The construction using ElGamal encryption over Fp3 has O(n2 log p) MFp

computational complexity. In contrast, the Adida and Wikström scheme

requires O(n2) exponentiations to precompute and evaluate.

1.5 Organization

Chapter 2 reviews a number of cryptographic concepts important to shuffle

protocols, including public-key cryptography, homomorphic cryptosystems,

and public-key obfuscation. Chapter 3 reviews the legacy shuffle literature

with their formal definition, their security model, and several concrete in-

stantiations. Chapter 4 defines the concept of public shuffles, and their exact

security model. Then we provide two concrete constructions using homomor-

phic encryptions.

8

Chapter 2

Preliminaries

Protocols for shuffles rely on numerous cryptographic building blocks. In this

chapter, we review the concepts and notation of these building blocks. We

begin with a review of public-key cryptography, its security definitions, and

the principal algorithms that we use in practical protocols. We review homo-

morphic cryptosystems, the interesting properties they yield, and the security

consequences of these properties. Then, we consider threshold cryptosystems,

where the process of key generation and decryption can be distributed among

trustees, a task of great importance to voting systems. We also review zero-

knowledge proofs, another critical component of universally verifiable voting,

and we briefly review program obfuscation, which is of particular importance

to understanding this dissertation.

2.1 Basics

For n ∈ N, [1, n] denotes the set {1, . . . , n}. If A is a probabilistic polynomial-

time (PPT) machine, we use a ← A to denote A which produces output

according to its internal randomness. In particular, if U is a set, then r
$←− U

9

CHAPTER 2. PRELIMINARIES

is used to denote sampling from the uniform distribution on U . For an integer

a, ‖a‖ denotes the bit length of a.

We shall write

Pr[x1
$←− X1, x2

$←− X2(x1), . . . , xn
$←− Xn(x1, . . . , xn−1) : ϕ(x1, . . . , xn)]

to denote the probability that when x1 is drawn from a certain distribution

X1, and x2 is drawn from a certain distribution X2(x1), possibly depending

on the particular choice of x1, and so on, all the way to xn, the predicate

ϕ(x1, . . . , xn) is true.

A function g : N → R is negligible if for every positive polynomial µ(·)

there exists an integer N such that g(n) < 1/µ(n) for all n > N .

Let R(·, ·) be a polynomial-time computable relation in the size of its first

input. Associated with R, we consider a language LR = {x : ∃w such that R(x,w) =

1}. A proof system (P ,V) for a relation R allowing a prover P to prove that

a value x is in the associated language LR. The algorithm P that outputs a

proof Γ that Γ ∈ LR and the algorithm V that verifies the proof.

2.2 Public Key Encryption

Public-key encryption was first suggested by Diffie and Helman [DH76] in

1976, and first implemented by Rivest, Shamir, and Adleman [RSA78] in

1978. At its core, it is a simple, though somewhat counter-intuitive, idea:

anyone can encrypt a message destined for Alice, but only Alice can decrypt

it. More precisely, Alice can generate a key pair composed of a public key

pk and a secret key sk . She then distributes pk publicly, but keeps sk to

herself. Using pk, Bob can encrypt a plaintext m into a ciphertext c. The

ciphertext c is then effectively “destined” for Alice, since only Alice possesses

sk , with which she can decrypt c back into m.

10

CHAPTER 2. PRELIMINARIES

More formally, we can define a public-key cryptosystem as follows.

Definition 2.2.1. A public-key cryptosystem E is a 3-tuple of PPT algo-

rithms (KG,Enc,Dec) such that

1. The key generation algorithm KG takes as input the security parameter

λ and outputs a pair of keys (pk, sk). For given pk, the message space

Mpk and the randomness space Rpk are uniquely determined.

2. The encryption algorithm Enc takes as input a public key pk and a

message m ∈ Mpk, and outputs a ciphertext c ∈ Cpk where Cpk is a

finite set of ciphertexts. We write this as c←− Encpk(m). We sometimes

write Encpk(m) as Encpk(m, r) when the randomness r ∈ Rpk used by

Enc needs to be emphasized. .

3. The decryption algorithm Dec takes as input a private key sk and a

ciphertext c, and outputs a message m or a special symbol ⊥ which

means failure.

We say that a public-key cryptosystem E is correct if, for any key-pair

(pk, sk)←− KG(λ) and anym ∈Mpk, it is the case that: m← Decsk(Encpk(m)).

Given such a cryptosystem, one can consider different security definitions.

2.2.1 IND-CPA Security

Intuitively, a cryptosystem is said to be semantically secure if, given a ci-

phertext c, an adversary cannot determine any property of the underlying

plaintext m. In other words, an adversary cannot extract any semantic in-

formation of plaintext m from an encryption of m. Semantic security was

first defined in 1982 by Goldwasser and Micali [GM82], who also showed

that semantic security is equivalent to ciphertext indistinguishability with

11

CHAPTER 2. PRELIMINARIES

chosen plaintexts [GM84]. This latter definition, known as GM Security or

IND-CPA , is a more natural one, so we state it here.

In this definition, given a public key pk, the adversary chooses two plain-

texts m0 and m1 and is then presented with c, a ciphertext of one of these

plaintexts, chosen at random. If the adversary cannot guess which of the two

plaintexts was chosen for encryption with noticeably better than 50% chance

(i.e. picking one at random), then the scheme is said to be secure against

chosen plaintext attack.

Definition 2.2.2 ([GM84]). A public-key cryptosystem E = (KG,Enc,Dec)

with a security parameter λ is called to be semantically secure (IND-CPA

secure) if after the standard CPA game being played with any PPT adversary

A = (A1,A2), the advantage Advcpa
E,A(λ), formally defined as∣∣∣∣∣∣Pr

b,r

 (pk, sk)←− KG(λ), (state,m0,m1)←− A1(pk),

c = Encpk(mb; r) : b←− A2(state,m0,m1, c)

− 1

2

∣∣∣∣∣∣ ,
is negligible in λ for all sufficiently large λ.

We know of a number of efficient schemes that are IND-CPA-secure.

El Gamal. El Gamal [El 84] is the prime example of an IND-CPA-secure

cryptosystem. Consider g the generator of a q-order subgroup of Z×p , where

p is prime and q is a large prime factor of p − 1. Key generation involves

selecting a random x ∈ Z×q , at which point sk = x and pk = y = gx (mod p).

Encryption is then given as

c = (α, β) = (gr,m · yr), r $←− Z×q .

Decryption is performed as

m =
β

αx
.

12

CHAPTER 2. PRELIMINARIES

Paillier. Paillier [Pai99] is another good example of an IND-CPA-secure

cryptosystem. Consider n = pq as in the RSA setting. Consider λ = lcm(p−

1, q − 1). Consider the function L(x) = (x − 1)/n. Consider a generator g

of Z×n2 specially formed such that g = 1 (mod n). The public key is then

simply n, while the private key is λ. Encryption of m ∈ Zn is performed as

c = gmrn (mod n)2 for a random r
$←− Z×n . Decryption is performed as

m ≡ L(cλ mod n2)

L(gλ mod n2)
mod n

We provide here a brief explanation of the Paillier cryptosystem, given

that it is particularly interesting and useful for our work in this dissertation.

Recall that:

– ϕ(n) = (p− 1)(q − 1) is Euler’s totient function

– λ = lcm(p− 1, q − 1) is the output of Carmichael’s function on n

– The order of Z×n2 is nϕ(n)

– For any a ∈ Z×n2 :

– aλ ≡ 1 mod n

– aλn ≡ 1 mod n2

Thus, consider the decryption function defined above, in particular the de-

nominator. Recall that g = 1 mod n, which we can also write g = nα + 1

for some integer α.

L(gλ mod n2) =
((1 + nα)λ mod n2)− 1

n

=
(nαλ) mod n2

n

≡ αλ mod n2

13

CHAPTER 2. PRELIMINARIES

Note that the exponentiation above reduces to the multiplication because all

other monomials in the expansion are multiples of n2. One can then easily

see that, because rn will cancel out by exponentiation to λ:

L(cλ mod n2) ≡ mαλ mod n2

and thus that the decryption works as specified.

2.2.2 IND-CCA Security

Indistinguishability with respect to adaptively-chosen plaintexts is not enough

for all applications. Intuitively, one should also consider the possibility that

the adversary can obtain the decryption of a few chosen ciphertexts before

receiving the challenge ciphertext. This notion of security is called IND-

CCA-security, informally known as “security against lunchtime attacks.” The

model is that the adversary might have access to a decryption box while the

owner is “out to lunch” (possibly metaphorically.) Later, the adversary will

try to use the information gained over lunch to decrypt other ciphertexts.

Definition 2.2.3. labeldef-indcca1 A public-key cryptosystem E = (KG,Enc,Dec)

with a security parameter λ is is said to be IND-CCA-secure given a decryp-

tion oracle OD: if after the standard CCA game being played with any PPT

adversary A = (A1,A2), the advantage Advcca
E,A(λ), formally defined as∣∣∣∣∣∣Pr

b,r

 (pk, sk)←− KG(λ), (state,m0,m1)←− AOD
1 (pk),

c = Encpk(mb; r) : b←− A2(state,m0,m1, c)

− 1

2

∣∣∣∣∣∣ ,
is negligible in λ for all sufficiently large λ.

14

CHAPTER 2. PRELIMINARIES

2.3 Homomorphic Public-key Encryption

Homomorphic public-key cryptosystems exhibit a particularly interesting al-

gebraic property: when two ciphertexts are combined in a specific, publicly-

computable fashion, the resulting ciphertext encodes the combination of the

underlying plaintexts under a specific group operation, usually multiplication

or addition.

Definition 2.3.1. A group homomorphic cryptosystem is a public-key cryp-

tosystem (KG,Enc,Dec) where the set of possible messages Mpk and the set of

possible ciphertexts Cpk are both groups such that for any public key pk and

any two ciphertexts c1 ∈ Encpk(m1), c2 ∈ Encpk(m2), the following condition

holds:

Decsk(c1 · c2) = m1 ·m2

where · represents the respective group operations in Cpk and Mpk. When

additive notation is used, Decsk(c1 + c2) = m1 +m2.

We can easily define a homomorphic encryption scheme with a re-randomization

algorithm using a similar way above.

Definition 2.3.2. A ring homomorphic cryptosystem is a public-key cryp-

tosystem where the set of possible messages Mpk and the set of possible

ciphertexts Cpk are both rings such that for any public key pk and any two

ciphertexts c1 ∈ Encpk(m1), c2 ∈ Encpk(m2), the following conditions hold:

1. Decsk(c1 + c2) = m1 +m2

2. Decsk(c1 · c2) = m1 ·m2

where + and · represent the respective ring operations in Cpk and Mpk.

15

CHAPTER 2. PRELIMINARIES

Re-Randomization

An immediate consequence of a cryptosystem’s homomorphic property is its

ability to perform re-randomization: given a ciphertext c, anyone can create

a different ciphertext c that encodes the same plaintext as c. Recall that E

is homomorphic for addition if (Mpk,+) forms a group, which means there

exists an identity plaintext m0 such that, ∀m ∈ Mpk,m + m0 = m. Thus,

given a homomorphic cryptosystem E , we can define the re-randomization

algorithm as follows:

ReRandpk(c; r) = c · Encpk(m0; r)

If Decsk(c) = m, then Decsk(ReRandpk(c)) = m, too.

For a public-key encryption scheme E = (KG,Enc,Dec) with an addi-

tional randomized algorithm ReRand that, on input a ciphertext outputs a

new ciphertext with the same message, a given adversary A = (A1,A2), let

Advrerand
E,A (λ) be the advantage of the following game:∣∣∣∣∣∣∣∣∣∣
Pr
b

(pk, sk)←− KG(λ), (state, c)←− A1(pk),

ĉ =

Encpk(Decsk(c)) if b = 0

ReRandpk(c) if b = 1

: b′ ←− A2(state, c, ĉ)

− 1

2

∣∣∣∣∣∣∣∣∣∣
.

We say that the public-key encryption scheme is re-randomizable if for all

PPT algorithms A, the advantage in the game above is negligible in λ.

Security of Homomorphic Cryptosystems

The malleability of ciphertexts in homomorphic cryptosystems limits the se-

curity of such schemes. In particular, the ability to re-randomization imme-

diately indicates that the system is not IND-CCA2-secure, and can be at best

IND-RCCA-secure. Even more significant, the ability to create a ciphertext

16

CHAPTER 2. PRELIMINARIES

of a related but different plaintext breaks even IND-RCCA security. Specifi-

cally, an adversary can take the challenge ciphertext c, create c = c·Encpk(m̄)

for some m̄ known to the adversary, query OD with c to obtain m, and com-

pute m = m+ m̄− 1. It has not been known whether homomorphic schemes

can be IND-CCA-secure, but in 1991, Damg̊ard proposed what we will call

the Damg̊ard’s Elgamal (DEG) cryptosystem [Dam91]. DEG is a relatively

straightforward modification of Elgamal that employs an additional exponen-

tiation to reject “invalid” ciphertexts. DEG was proven to be CCA1-secure

under a nonfalsifiable knowledge-of-the-exponent assumption [Nao03].

Homomorphic Schemes in Practice

A number of practical schemes are homomorphic.

RSA. In raw RSA, encryption is performed as c = me mod n. Thus,

clearly, c0 · c1 = (m0 · m1)e mod n. Raw RSA is thus homomorphic on

operation ·. That said, raw RSA is not even IND-CPA-secure, which means

it is not very useful in many applications. RSA-OAEP, on the other hand, is

quite useful, but loses the homomorphic property due to the non-malleable

OAEP padding.

El Gamal. In El Gamal, encryption is performed as c = (gr,m ·yr). Thus,

if we define × as the element-wise product of ciphertext pairs, then El Gamal

is homomorphic for ×:

(gr1 ,m1 · yr1)× (gr2 ,m2 · yr2) =
(
gr1+r2 , (m1m2) · yr1+r2

)
.

El Gamal is particularly interesting: it exhibits a homomorphism and is

IND-CPA-secure.

17

CHAPTER 2. PRELIMINARIES

Paillier. In Paillier, encryption is performed as c = gmrn mod n2. Clearly,

this scheme is homomorphic for + over the plaintext space Zn:

Encpk(m1, r1) · Encpk(m2, r2) = (gm1rn1) · (gm2rn2)

= gm1+m2(r1r2)n

= Encpk(m1 +m2, r1r2).

Note that Paillier decryption is efficient, which means the plaintext do-

main can be superpolynomial while retaining the additive homomorphism.

2.4 Zero-Knowledge Proofs

A major component of verifiable voting protocols is the zero-knowledge proof.

In a zeroknowledge proof, a prover P interacts with a verifier V to demon-

strate the validity of an assertion, e.g., “ciphertext c under public key pk

decrypts to ‘I am Sim’.” If the prover is honest—i.e. the assertion is true—

then the verifier should accept this proof. If the prover is dishonest—i.e., the

assertion is false—then the verifier should reject this proof with noticeable

probability. Finally, the verifier should learn nothing more than the truth

of the assertion. In particular, the verifier should be unable to turn around

and perform this same (or similar) proof to a third party. The notion of

“zero-knowledge” is tricky to define: how can one capture the concept that

no knowledge has been transferred? The accepted approach is to look at

the verifier and see if its participation in the proof protocol bequeathed it

any new capability. The protocol is zero-knowledge if, no matter what the

verifier outputs after the protocol, it could have produced the very same

output without interacting with the prover. Thus, though the verifier may

be personally convinced from its interaction that the prover’s assertion is

18

CHAPTER 2. PRELIMINARIES

indeed true, the verifier is unable to relay any new information convincingly,

in particular he cannot perform the proof on his own.

The prover’s assertion is formally defined as “x is in language L,” where

x is a string, and L is a language, usually an NP language. Thus, the prover

P is given x and a witness w for x such that R(x,w) = 1, where R is the

binary relation for language L. The verifier V only gets x as input, of course.

The zero-knowledge property of the protocol ensures that the witness w, and

in fact any non-trivial function of the witness, remains hidden from V .

Definition 2.4.1 (Perfect Zero-Knowledge Proof). An interactive protocol

(P ,V) for language L is defined as a perfect zero-knowledge proof if there

exists a negligible function ν(·) such that the protocol has the following

properties:

– Completeness: ∀x ∈ L,Pr[(P ,V)(x,w) = 1] > 1− ν(λ).

– Soundness: ∀P∗,∀x /∈ L,Pr[(P∗,V) = 1] < 1
2
.

– Zero-Knowledge: ∃ PPT S,∀V∗,∀x ∈ L, S(x) ≈ (P ,V∗)(x,w)

2.4.1 Zero-Knowledge Variants

A few variants of this definition exist:

– Computational Zero-Knowledge (CZK): The verifier V , and thus

the dishonest version V∗, are probabilistic polynomial-time. In other

words, a surprisingly powerful verifier might be able to extract some

knowledge from an execution of a CZK protocol.

– Zero-Knowledge Argument: The prover P is assumed to be com-

putationally constrained, i.e., it is a PPT algorithm. This setting must

19

CHAPTER 2. PRELIMINARIES

be considered with care, as the PPT limitation is dependent on the

security parameter λ, but P may spend significant time preparing for

the protocol execution.

– Honest-Verifier Zero-Knowledge (HVZK): The verifier V is ex-

pected to perform according to the protocol. In particular, as the

verifier is usually expected to submit a random challenge to the prover,

an honest verifier will always flip coins when picking a challenge and

will never base his challenge on the prover’s messages. The result of an

HVZK assumption is that the simulation proof can focus on simulat-

ing a transcript of the interaction, rather than simulating anything V

could output. An HVZK protocol can be turned into a non-interactive

zero-knowledge (NIZK) proof using the Fiat- Shamir heuristic [FS87],

where the verifier’s random messages are generated using a hash func-

tion applied to the prior protocol messages. This hash function must

be modeled as random oracle, which has recently caused some concern

in the theoretical cryptography community [GT03].

Zero-knowledge proofs play a big role in verifiable shuffle protocols, where

each sender must prove that it performed its designated action correctly while

preserving shuffler’s privacy. As the integrity of the shuffler takes prece-

dence over his privacy, it can be immediately said that computational zero-

knowledge proofs will be preferable to zero-knowledge arguments.

2.4.2 Proof of Knowledge

Certain zero-knowledge proofs provide an additional property that is partic-

ularly useful in proving overall protocol security: they prove knowledge of the

witness, not just existence. In particular, this means that, given rewindable,

20

CHAPTER 2. PRELIMINARIES

black-box access to the prover program P , one can extract a witness w to

the assertion that x ∈ L. More formally, we define a zero-knowledge proof

of knowledge as follows.

Definition 2.4.2 (Zero-Knowledge Proof of Knowledge). An interactive pro-

tocol (P ,V) for a language L is defined as a zero-knowledge proof of knowl-

edge if the protocol is zero-knowledge and it has the following, additional

property:

– Extraction: ∃ PPT E ,∀ (x,w) ∈ R, EP(x,w)() = w. By EP(x,w), we

mean that we take the prover program P , provide it with inputs (x,w),

and give the extractor Enc black-box access to this initialized prover

program, allowing the extractor to rewind, reply, and provide continu-

ing inputs to P .

A proof-of-knowledge protocol can be particularly useful in the context of

reduction proofs, since the extraction property allows a simulator to get the

witness and use it in the reduction process. A zero-knowledge proof without

extractability is much more difficult to integrate into a complete protocol

security proof.

2.5 Public-Key Obfuscation

Ostrovsky and Skeith [OS05] proposed a slightly different and weaker model

of obfuscation, where the outputs of the obfuscated program are encrypted

versions of the outputs of the original, unobfuscated program. In other words,

their technique allows for outsourcing most of a computation, but not all of it:

a final decryption is still required after the obfuscated program has been exe-

cuted. They name this model public-key obfuscation. Interestingly, because

21

CHAPTER 2. PRELIMINARIES

the outputs of a public-key-obfuscated program are encrypted, Ostrovsky and

Skeith’s definition is able to capture the additional notion of security missing

from the Barak et al. and Tauman-Kalai and Goldwasser definitions: out-

put indistinguishability. Informally, a public-key obfuscator is secure when

an adversary cannot distinguish between the public-key obfuscations of two

programs it selected. We now provide a more formal definition.

Definition 2.5.1. A program class is a family {Pλ}λ∈N of sets of programs

such that there exists a polynomial s(·) such that |P | ≤ s(λ) for every p ∈ Pλ.

The program class is said to be PPT if, for every λ ∈ N , for every p ∈ Pλ,

P runs in probabilistic polynomial time in λ.

Definition 2.5.2 (Public-Key Obfuscation). The algorithmO is a public-key

obfuscator for the program class {Pλ} and the cryptosystem E = (KG,Enc,Dec)

if:

– Correctness: there exist a negligible function ν(·) such that, for every

λ ∈ N, for every P ∈ Pλ, for all inputs x:

Pr[Decsk(O(P)(x, r)) = P (x)] > 1− ν(λ)

taken over the choice of r, an extra input which parameterizes the

execution of O(P).

– Conciseness: there is a polynomial l(·) such that, for every λ ∈ N and

for every P ∈ Pλ,

|O(P)| ≤ l(|P |).

Now, we must describe what it means for this public-key obfuscator to

be secure. Ostrovsky and Skeith give an indistinguishability-based defini-

tion. Thus, consider first the indistinguishability experiment. Informally, we

22

CHAPTER 2. PRELIMINARIES

first generate a keypair. Based on the public key, the adversary selects two

programs from the program class. We obfuscate one of the two, selected at

random, and we ask the adversary to guess which one was obfuscated. We

now formalize this intuition, which is much like the semantic security for

encryption schemes which we explored earlier in this chapter. We denote

P = {Pλ}.

Experiment Expindb
P,O,E,A(λ)

(pk, sk)
$←− KG(1λ);

(P0, P1, state)← A1(pk);

b′ ← A2(O(1λ, pk, sk, Pb), state)

If P0, P1 ∈ Pλ return b′, otherwise a random bit.

We can now define the security property we seek from a public-key ob-

fuscator.

Definition 2.5.3 (Secure Public-Key Obfuscation). A public-key obfuscator

O for a program class with respect to a cryptosystem E = (KG,Enc,Dec) is

secure, or polynomially indistinguishable, if there exists a negligible function

ν(·) such that:

∣∣Expind0
P,O,E,A(λ)− Expind1

P,O,E,A(λ)
∣∣ < ν(λ).

23

Chapter 3

Verifiable Secret Shuffles: A

Review

3.1 Introduction

Consider a set of senders, each with a private message, who wish to gen-

erate a shuffled list of these messages, while keeping the permutation se-

cret. Protocols that implement this functionality were first introduced by

Chaum [Cha81] in 1981, who called them mix-nets. There are many differ-

ent types of mix-nets, and many different definitions and constructions.

Non-cryptographic mixnets tend to mix inputs more or less synchronously

for low-latency applications such as anonymized web browsing [DMS04].

These mixnets generally focus on achieving some level of privacy, without

usually worrying about robustness: if a few mix servers drop or otherwise

corrupt messages, the impact on the application is generally not horrible: a

sender can simply retry using a different set of mix servers.

By contrast, robust mixnets handle applications like voting, which have

significantly different requirements. On the one hand, they provide far more

24

CHAPTER 3. VERIFIABLE SECRET SHUFFLES: A REVIEW

flexibility: mixing can take hours or, in some cases, even days, because shuf-

fling is performed in large, well-defined batches, with no need for real-time

responses. On the other hand, the correctness requirements are much more

stringent: inputs should not be lost or altered, in some cases even when

all mix servers are corrupt. The privacy of the shuffle permutation is also

important, and should be provably–not just heuristically–protected.

In this chapter, we review the past 25 years of literature on verifiable

shuffles. We note that this area of research has been quite productive, with

numerous directions explored, and fascinating techniques developed to im-

prove efficiency. The security definitions have evolved. In short, shuffles have

been a fertile area of research.

3.2 Notation and Definitions

Firstly, we rephrase the formal definition of a verifiable shuffle given by

Nguyen et al. [NSK04, Def. 4], In [NSK04] they extensively use a re-randomizable

public-key encryption scheme. We do not construct a secret verifiable shuffle,

but we also rely on the re-randomization property of an encryption scheme

with semantic security. We additionally introduce some notation used to de-

fine public verifiability. We then extend it to the definition of a generalized

shuffle.

Let E = (KG,Enc,Dec,ReRand) be an encryption scheme with a re-

randomization algorithm satisfying semantic security. Let c, ĉ be two lists

of ciphertexts, but all elements of each list belong to the ciphertext space

Cpk defined in E . We use Σn to denote the set of all permutations on [1, n].

For a set X = {a1, . . . , an}, we denote by |X| the number of elements in the

set, i.e., |X| = n. Let Φ(·, ·) be an efficient shuffle relation that holds if the

25

CHAPTER 3. VERIFIABLE SECRET SHUFFLES: A REVIEW

witness w =
(
π, s1, . . . , s|c|

)
demonstrates that |c| = |ĉ| and

∃
(
π, s1, . . . , s|c|

)
,∀ i ∈ [1, |c|] : ĉπ(i) = ReRandpk(ci, sj) for some j ∈ [1, |c|]

(3.2.1)

where δ is a public parameter including pk, π ∈ Σ|c|, ci ∈ c, and ĉπ(i) ∈ ĉ. As-

sociated with Φ, we define a language LΦ = {x = (δ, c, ĉ) : ∃w such that Φ(x,w) =

1}.

Definition 3.2.1 (Verifiable Shuffle). A verifiable shuffle scheme ΦE over

a re-randomizable public-key cryptosystem E = (KG,Enc,Dec,ReRand) is a

triple of PPT algorithms (Setup, Shuffle,Verify) which works as follows:

– δ ← Setup(λ, n) : The setup algorithm takes as input a security param-

eter λ and n ∈ N, and outputs a public parameter δ := (pk,Σn) where

pk ←− KG(1λ).

– (ĉ,Γ)← Shuffle(δ, w, c) : First the shuffle algorithm generates a random

permutation π ∈ Σn and a list of randomness (s1, . . . , sn) ∈ (Rpk)
n,

and sets the secret parameter w = (π, s1, . . . , sn). Using the public

parameter δ and it secret parameter w, the shuffle algorithm encodes

a list of ciphertexts c = (c1, . . . , cn) as a shuffled set of ciphertexts

ĉ = {ĉ1, . . . , ĉn} such that Decsk(ci) = Decsk
(
ĉπ(i)

)
for some i ∈ [1, n]

where ci = Encpk(mi, ri) and ĉπ(i) = ReRandpk
(
cπ(i), sπ(i)

)
. Finally it

forms a proof Γ for the shuffle performed by the shuffler in possession

of π
$←− Σn and a list of randomness {s1, . . . , sn}.

– {accept, reject} ← Verify(δ, c, ĉ,Γ) : The verification algorithm takes as

input the public parameter δ, two lists of ciphertexts c, ĉ and a proof

Γ, and checks the validity of the proof by running (P ,V)(δ, c, ĉ,Γ); if

this fails output reject and otherwise output accept.

26

CHAPTER 3. VERIFIABLE SECRET SHUFFLES: A REVIEW

When the shuffle algorithm requires the secret parameter in order to

output a permuted and re-randomized version of input ciphertexts, we call

it secret shuffle. If the verification algorithm does not requires any secret

parameter, we call it (publicly) verifiable shuffle. Thus, if a secret parameter

w is not empty but Verify does not take it as input, we call this type of shuffle

schemes a publicly verifiable secret shuffle scheme, shortly a secret shuffle.

We remark that decryption shuffles also belong to secret shuffle because they

use a random secret permutation in shuffling.

3.3 Security

There are two security requirements. Privacy requires an honest shuffle to

protect its secret permutation whereas verifiability requires that any attempt

by a malicious shuffle to produce an incorrect output must be detectable.

3.3.1 Verifiability for Secret Shuffles

We rephrase the verifiability condition for secret shuffles in our language.

The reader is encouraged to refer to [NSK04] for in-depth discussions on the

verifiability condition of shuffles.

Definition 3.3.1 ([NSK04]). Let a set of algorithms (P ,V) be a proof system

for an efficient shuffle relation Φ with associated language LΦ. A shuffle

scheme ΦE = (Setup, Shuffle,Verify) is verifiable if its proof system (P ,V) has

an efficient algorithm V and satisfies completeness and soundness below.

1. Completeness. For all x = (δ, c, ĉ) ∈ LΦ, (P ,V)(x,Γ) = 1 for all proofs

Γ← P(x,w) where δ ← Setup(λ, n, `).

27

CHAPTER 3. VERIFIABLE SECRET SHUFFLES: A REVIEW

2. Soundness. For all PPT A and for δ ← Setup(λ, n, `), the probability

that A(λ, n, `, δ) outputs (x,Γ) such that x 6∈ LΦ but (A,V)(x,Γ) = 1,

is negligible in the security parameter λ.

3.3.2 Unlinkability Experiments

One definition for security of a secret shuffle ΦE = (Setup, Shuffle,Verify)

is indistinguishability against chosen permutation attack (CPAΣ), which is

analogous to indistinguishability against chosen plaintext attack in public-

key cryptosystems [NSK04]. Nguyen et al. [NSK04] proposed a different

definition called semantic privacy against CPAΣ, but they showed that the

two notions are eventually equivalent.

For a proof system, we use ViewP,V(x) to denote all that V can see from

the execution of the proof system on input x.

Definition 3.3.2 (Unlinkability in [NSK04]). Let ΦE = (Setup, Shuffle,Verify)

be a secret shuffle scheme.

Experiment ExpShuffle
A (ΦE , λ)

δ ← Setup(λ, n);

(π0, π1, c)← A(δ, n) where πi ∈ Σn for i = 1, 2;

(ĉ,Γ)← Shuffle(δ, wb, c) where wb
$←− {π0, π1};

v ←
(
ĉ,ViewP,V(δ, c, ĉ,Γ), c, {mi}ni=1, {ri}ni=1

)
where ci = Encpk(mi, ri);

b′ ← A(δ, v);

In the experiment above, we define the advantage of an adversary A, running

in probabilistic polynomial time and making a polynomial number of queries,

as:

AdvShuffle
A (ΦE , λ) =

∣∣∣∣Pr[b = b′]− 1

2

∣∣∣∣ .
28

CHAPTER 3. VERIFIABLE SECRET SHUFFLES: A REVIEW

A verifiable secret shuffle scheme is unlikable if

AdvShuffle
A (ΦE , λ) ≤ negl(λ)

where negl(·) is a negligible function of its input.

For a secret shuffle, we describe a variant of the unlinkability notion

against the chosen random attack.

Definition 3.3.3 (Unlinkability for a Secret Shuffle). Let ΦE = (Setup, Shuffle,Verify)

be a generalized secret shuffle scheme.

Experiment ExpShuffle
A (ΦE , λ)

δ ← Setup(λ, n, `);

(r0, r1, c)← A(δ, n, `) where ri = (ri1, . . . , ri`) for i = 1, 2;

(ĉ,Γ)← Shuffle(δ, wb, c) where wb
$←− {r0, r1};

ν ←
(
ĉ,ViewP,V(δ, c, ĉ,Γ), c, {mi}ni=1, {ri}ni=1

)
where ci = Encpk(mi, ri);

b′ ← A(δ, ν);

In the experiment above, we define the advantage of an adversary A, running

in probabilistic polynomial time and making a polynomial number of queries,

as:

AdvShuffle
A (ΦE , λ) =

∣∣∣∣Pr[b = b′]− 1

2

∣∣∣∣ .
A secret shuffle scheme is unlikable if the advantage AdvShuffle

A (ΦE , λ) is neg-

ligible in the security parameter λ.

3.4 Selected Prior Work

As mentioned above, there are numerous prior work we have to pay attention

to. However, in this section we just review two selected work. The reason

29

CHAPTER 3. VERIFIABLE SECRET SHUFFLES: A REVIEW

is why the Furukawa-Sako scheme [FS01] is the first verifiable, efficient, and

secure shuffle scheme, and the Groth scheme [Gro03] is the most efficient.

3.4.1 Furukawa-Sako Protocol

Represent the permutation πj by the permutation matrix M j , with M j
ab = 1

if and only if πj(a) = b, and M j
ab = 0, otherwise. A nice way of using this

matrix representation to achieve efficient zero-knowledge proofs is described

in [FS01, Fur05]. It is based on the next fact [FS01]: Let δij be 1 if i = j

and 0 otherwise. Let δijk be 1 if i = j = k and 0 otherwise. Let q be a large

prime. An n× n matrix M is a permutation matrix if and only if∑
h

MhiMhj = δij (3.4.2)

and ∑
h

MhiMhjMhk = δijk. (3.4.3)

Thus, instead of re-randomization, one could prove that

cji = ReRandpk

(
n∏
i=1

c
Mji

j−1,i, r
′
ji

)

and that Eq. (3.4.2) and Eq. (3.4.3) are true.

Equation (3.4.2) can be verified by defining si =
∑n

i=1Mjiej, for ej chosen

randomly by verifier, and then checking that
∑

i=1 s
2
i =

∑n
i=1 e

2
j . Due to

Eq. (3.4.2),

s2
i =

n∑
j=1

MijMikejek =
∑

e2
χ(i)

where χ(j − 1) is some permutation, and

n∑
i=1

s2
i =

∑
e2
χ(i) =

n∑
i=1

e2
i .

30

CHAPTER 3. VERIFIABLE SECRET SHUFFLES: A REVIEW

Analogously, Eq. (3.4.3) is verified by checking that (
∑
Mijej)

3 =
∑n

i=1 e
3
i .

Some more care has to be taken to achieve complete security [FS01, Fur05].

In this approach, the prover must make approximately 8n exponentia-

tions, and the verifier must make approximately 10n exponentiations. When

‖p‖= 1024 and ‖q‖= 160, it takes about 5280n bits to communicate the

proof of knowledge.

3.4.2 Groth Protocol

An alternative, somewhat more efficient, verifiable shuffle was proposed by

Groth [Gro03]. It assumes the use of an IND-CPA secure homomorphic

cryptosystem (e.g., ElGamal, Paillier, or Damg̊ard and Jurik [DJ01]), and

of a compatible homomorphic commitment scheme. In this verifiable shuffle,

the prover first commits to the shuffle. The verifier picks a vector of random

integers, and the prover proves that the scalar product of this vector and the

vector of encrypted votes is preserved after the shuffling.

Commitment Schemes. A commitment scheme is a function com : X ×

R → Y from the plaintext space X and random coin space R to the com-

mitment space Y . A commitment scheme com is (a) statistically hiding if

the commitment y = com(m, r) leaks a statistically insignificant amount of

information about the plaintext m and the coin r; and (b) computation-

ally binding if given commitment y = com(m, r) to some element r from

the plaintext space, it is hard to find m′ ∈ Mpk,m
′ 6= m, and an r′, s.t.

y = com(m′, r′). For the best known commitment schemes (e.g., Peder-

sen’s [Ped91]), the plaintext space is equal to ZN for some N . Therefore,

com(m, r) = com(m+N, r) and therefore, such commitment schemes are not

binding over the integers.

31

CHAPTER 3. VERIFIABLE SECRET SHUFFLES: A REVIEW

Groth’s Verifiable Shuffle. In more details, Groth’s verifiable shuffle is

as follows:

– Prover: For j = {1, . . . , n}, commit to commit to C1,i ← compk(π(j), r2,j).

Send C1,i, together with a proof of correct shuffle, to verifier.

– Verifier: For j = {1, . . . , n}, generate a random tj and send tj to prover.

– Prover: For j = {1, . . . , n}, C2,i ← compk(tπ(j), rtj). Send {C1,i}i,

together with a proof of correct shuffle and that this shuffle was the

same as on Step 1, to verifier.

– Prover proves in zero-knowledge that Decsk
(∏

c
tπ(i)
j,i

)
= Decsk

(∏
ctij−1,i

)
.

The three first proofs of knowledge can be executed jointly, by proving

that for a random γ chosen by the verifier, {C1,iC
γ
2,i} commits to {i + γti}.

The proof that {ci} commits to {mi} can be done as follows: Prover sets

cm = compk(m; 0), for m generated by the verifier, and proves that the mul-

tiplication of the contents of c1c
−1
m , . . . , cnc

−1
m is equal to

∏n
i=1(mi − m) All

(or at least a significant fraction) of the resulting voters zero-knowledge mul-

tiplication proofs can be done in parallel by using multi-commitments.

In this approach, the prover must perform approximately 6n exponen-

tiations, and the verifier must perform approximately 6n exponentiations.

When ‖p‖= 1024 and ‖q‖= 160, it takes about 1184n bits to communicate

the proof of knowledge.

32

CHAPTER 3. VERIFIABLE SECRET SHUFFLES: A REVIEW

3.5 Public Shuffles with Private Permutation

3.5.1 Introduction

The goal of shuffling in public is the public-key obfuscation of the shuffle

phase of a mix-net comprising either a decryption shuffle or re-encryption

shuffle functionality (program) [AW07]. Informally, a public-key obfuscator

O takes a program F and outputs a new program O(F) which outputs

encryptions of F’s outputs. That is ∃ �,∀xO(F) � x = O(F(x)) for some

encryption function O and we say the operator � evaluates the obfuscated

program on input x. A formal model is proposed in Definition 3 [AW07] which

builds upon an earlier definition by Ostrovsky and Skeith [OS05]. Adida and

Wikström present obfuscators for decryption and re-encryption shuffles in

the BGN [BGN05] and Paillier [Pai99] cryptosystems respectively. They also

prove that their obfuscators are semantically secure (Definition 4 [AW07]).

Given a set of parties who sample and obfuscate a shuffle before any input

is received, one can construct a mix-net provided that joint decryption is

verifiable.

3.5.2 Adida and Wikström Protocol

Adida and Wikström [AW07] proposed two schemes shuffling in public allow

a shuffle to be precomputed. These schemes imply that no mix servers need

be present at election time for mixing to take place. One downside of their

schemes is that the scheme significantly restricts the number and size of votes.

Additionally the main disadvantage of shuffling in public is its inefficiency,

with generation and evaluation of the precomputed shuffle requiring O(n2)

exponentiations.

33

CHAPTER 3. VERIFIABLE SECRET SHUFFLES: A REVIEW

The BGN Cryptosystem

We denote the BGN cryptosystem by E = (KG,Enc,Dec). It operates in

two groups G1 and G2 both of order n = q1q2, where q1 and q2 are distinct

prime integers. We use multiplicative notation in both G1 and G2, and

denote by g a generator in G1. The groups G1 and G2 exhibit a polynomial-

time computable bilinear map e : G1 × G1 → G2 such that G = e(g, g)

generates G2. Bilinearity implies that ∀u, v ∈ G1 and ∀ a, b ∈ Z, e(ua, vb) =

e(u, v)ab. We refer the reader to [BGN05] for details on how such groups

can be generated and on the cryptosystem’s properties, which we briefly

summarize here.

Key generation. On input 1λ, KG generates (q1, q2,G1, g,G2, e(·, ·)) as above

such that n = q1q2 is a λ-bit integer. It chooses u ∈ G1 randomly, de-

fines h = uq2 , and outputs a public key pk = (n,G1,G2, e(·, ·), g, h)

and secret key sk = q1.

Encryption. On input pk and m, Enc selects r ∈ Zn randomly and outputs

c = gmhr.

Decryption. On input sk = q1 and c ∈ G1, Dec outputs loggq1 (cq1).

Homomorphisms. The BGN cryptosystem is additively homomorphic.

This scheme needs this property, but this scheme also exploits its one-time

multiplicative homomorphism implemented by the bilinear map:

e(Encpk(m0, r0),Encpk(m1, r1)) = Encpk(m0m1,m0r1 +m1r0 + (logg u)q2r0r1)

The result is a ciphertext in G2 which cannot be efficiently converted back to

an equivalent ciphertext in G1. Thus, the multiplicative homomorphism can

be evaluated only once, after which only homomorphic additions are possible.

34

CHAPTER 3. VERIFIABLE SECRET SHUFFLES: A REVIEW

For notational clarity, we write c1⊕ c2 := c1c2 for ciphertexts in G1 or G2

and c1 ⊗ c2 := e(c1, c2) for ciphertexts in G1.

BGN-based Scheme

The first obfuscator is based on the fact that matrix multiplication only

requires an arithmetic circuit with multiplication depth 1. Thus, the BGN

cryptosystem can be used for homomorphic matrix multiplication. Consider

an n1×n2-matrix C = (cij) = Encpk(aij) and an n2×n3-matrix C ′ = (djk) =

Encpk(bjk), and let A = (aij) and B = (bjk). Define homomorphic matrix

multiplication by

C ? C ′ :=

(
n2⊕
j=1

cij ⊗ djk

)
and have

Decsk(C ? C ′) =

(
n2∑
j=1

aijbjk

)
= AB.

Paillier-based Scheme

We use the additive homomorphism and the special homomorphic property

exhibited above to define a form of homomorphic matrix multiplication of

matrices of ciphertexts. Given an n-permutation matrix Λπ = (λπij) and

randomness r, s ∈ (Z×N)n×n, define Cπ =
(
cπij) = EncN3(λπijEncN2(0, rij), sij

)
where EncN3 denotes Paillier’s cryptosystem using modulus N3 and EncN3

denotes that using modulus N2. We define a kind of matrix multiplication

of d = (d1, . . . , dn) ∈ Cn
N2 and Cπ:

d ? Cπ =

(
n∏
i=1

(cπij)
di

)
and have

Decp,2(Decp,3(d ? Cπ)) = (mπ(1), . . . ,mπ(n)).

35

Chapter 4

Verifiable Public Shuffles

In this chapter, we describe a method to construct a public shuffle without re-

lying on permutations and randomizers generated privately: Given an n-tuple

of ciphertext (c1, . . . , cn), our shuffle algorithm computes fi(c1, . . . , cn) for

i = 1, . . . , ` where each fi(x1, . . . , xn) is a symmetric polynomial in x1, . . . , xn.

Depending on the symmetric polynomials we use, we propose two concrete

constructions. One is to use ring homomorphic encryption with constant ci-

phertext complexity and the other is to use simple ElGamal encryption with

linear ciphertext complexity in the number of senders. Both constructions

are free of zero-knowledge proofs and publicly verifiable.

4.1 Introduction

Given n distinct elements, (m1, . . . ,mn), from each sender, a shuffle is an

n-party functionality that allows all users to learn
⋃n
i=1{mi}, but does not

reveal any information on link between mi and its sender without negligible

probability. Shuffles can be used in various applications including e-voting

and private set union ensured to hide the link between messages and their

36

CHAPTER 4. VERIFIABLE PUBLIC SHUFFLES

senders. A Chaumian mix-net consists of multiple mix-servers which have

their private permutation and randomness. If a mix-net consists of a single

mix-server, then the mix-server knows who sent what message. Thus, there

must be at least one honest mix-server in a mix-net.

However, the assumption that there exists an honest mix-server (a.k.a.,

a trusted third party) in real life, may be quite strong. Thus many re-

searchers have focused on strengthening verifiability in Chaum’s construc-

tion (e.g., [FS01, Nef01, Nef03, Fur05, Wik05, GL07]). Their goal is to ef-

ficiently enforce each mix-server to behave as being in public even though

each mix-server should keep his permutation and randomizers secret. When a

shuffle allows public verifiability, in general, by using zero-knowledge proofs,

but requires a secret permutation and randomizers, Neff [Nef01] (and later

Groth [Gro10]) call it a verifiable secret shuffle.

In TCC 2007, Adida and Wikström [AW07] proposed a way by which

mix-servers carry out shuffling in public. Their work is based on the no-

tion of public-key obfuscation studied by Ostrovsky and Skeith [OS05] for

different purposes. Very informally, their basic idea is that mix-servers pre-

compute their private permutation and then publish it in public. Though

secret information is concealed by a homomorphic cryptosystem such as the

BGN cryptosystem [BGN05] and the Paillier cryptosystem [Pai99], it should

be generated by a trusted party. Thus, we call their work a public shuffle

with a private permutation. In this paper, we will try to construct a verifiable

public shuffle without a private permutation.

37

CHAPTER 4. VERIFIABLE PUBLIC SHUFFLES

4.2 Generalized Shuffle

4.2.1 Syntax of Generalized Shuffle

Now we describe the syntax of a generalized shuffle.

As a symmetry of verifiable secret shuffles, it is not difficult to make

the definition of publicly verifiable public shuffle or public shuffle for short.

Namely, public shuffle is a publicly verifiable shuffle scheme such that its

shuffle algorithm also does not require any secret parameter. However, it

is not easy to design and construct a public shuffle scheme following Defi-

nition 3.2.1. Although Adida et al. [AW07] and Parampalli et al. [PRT12]

achieve public shuffle by utilizing the public-key obfuscation technique, se-

cret parameters in their schemes are required in the setup algorithm instead

of the shuffle algorithm. To remove dependencies on secret parameters in a

shuffle scheme, we first consider how to construct a secret shuffle without a

secret permutation as a intermediate step toward public shuffle. However,

we observed that it is difficult to achieve a secret shuffle without requiring

a secret permutation under the legacy definition. Hence, we will relax the

shuffle definition above in order to realize the notion of public shuffle. In

particular, it is worth noting it has been a long standing hard problem to

design a secure shuffle protocol without relying on TTP.

Definition 4.2.1 (Generalized Shuffle). Let E = (KG,Enc,Dec,ReRand) be

a re-randomizable public-key cryptosystem with semantic security. A gener-

alized shuffle scheme Φ̃E over E is a triple of PPT algorithms as defined in

Definition 3.2.1 except for

– δ ← Setup(λ, n, `) : The setup algorithm takes as input a security

parameter λ and parameters n, ` ∈ N, and outputs a public parameter

38

CHAPTER 4. VERIFIABLE PUBLIC SHUFFLES

δ :=
(
pk, {σj}`j=1, {Ti}ni=1

)
where pk ←− KG(1λ), σj : (Cpk)

n → Cpk,

and Ti : (Mpk)
` →Mpk.

– (ĉ,Γ) ← Shuffle(δ, w, c) : The shuffle algorithm takes as input a pair

of parameters (δ, w) and a list of ciphertexts c = (c1, . . . , cn) where

ci ∈ Encpk(mi), and outputs a set of ciphertexts ĉ = {ĉ1, . . . , ĉ`} where

ĉj = ReRandpk (σj(c1, . . . , cn), r̂j)) along with a proof Γ, satisfying

Decsk(ci) = Ti′ (Decsk(ĉ1), . . . ,Decsk(ĉ`))

for some i, i′ ∈ [1, n], j ∈ [1, `].

A generalized shuffle scheme is correct if for all messages mi ∈Mpk and

any n, ` ∈ N, there exists each transformation Ti : (Mpk)
` →Mpk such that

{T1 (Decsk(ĉ1), . . . ,Decsk(ĉ`)) , . . . ,Tn (Decsk(ĉ1), . . . ,Decsk(ĉ`))}

= {m1, . . . ,mn}

= {Decsk(c1), . . . ,Decsk(cn)}.

(4.2.1)

In the above definition, if we choose functions σj’s and transformations

Ti’s such that {σ1, . . . , σn} and {T1, . . . ,Tn} are the set of all projection maps

with selecting a random permutation π as an additional secret parameter,

then we obtain a standard shuffle defined in Definition 3.2.1. Note that in

this case, i, j ∈ [1, n].

4.2.2 Security Model

In this section we give the security definition for generalized shuffle. Before

describing the formal definition we identify which classes of entities partici-

pate in a given shuffle scheme. Our security definition for shuffle also follows

the definition given by [NSK04], but we need to slightly modify their security

defintion since the secret parameter does not contain a private permutation

any more.

39

CHAPTER 4. VERIFIABLE PUBLIC SHUFFLES

Participating Parties

In our description, we use a few classes of entities which participate in shuffle.

– Senders. There are an arbitrary number of senders participating in

a shuffle scheme (we will denote the number of senders by n). Each

sender has a secret input.

– Shuffler. A shuffler receives the n ciphertexts of all the senders and

outputs the n ciphertexts as a result of shuffle.

– Verifier. A verifier is a party that verifies that the shuffler correctly

follows the shuffle scheme. Although there can be many verifiers (and

senders can be verifiers as well) the verifiers are deterministic and use

only public information, so we model them as a single party.

– Adversary. The adversary attempts to subvert a shuffle scheme. We

detail the adversarial model in the later.

Security Definition

As mentioned in [NSK04], one of the primary requirements for being secure

is verifiability and the other is unlinkability. Roughly speaking, verifiability

means that a malicious shuffler cannot produce an incorrect output without

detection by verifiers. What means that a shuffle scheme is unlinkable is

that it is hard to find a permutation from input ciphertexts and output

ciphertexts.

the adversary is PPT bounded and can be either semi-honest or malicious.

A semi-honest party is assumed to follow the protocol exactly as what is

prescribed by the protocol, except that it analyzes the records of intermediate

computations. On the other hand, a malicious party can arbitrarily deviate

40

CHAPTER 4. VERIFIABLE PUBLIC SHUFFLES

from the protocol. However, we will not consider preventing those malicious

behaviors such as independently and arbitrarily selecting inputs from the

message space, and quitting the protocol at any step.

Verifiability. For a generalized shuffle scheme, we first modify the shuffle

relation described in Eq. (3.2.1). A generalized shuffle relation Φ̃(x,w) is

satisfied if the witness w = (s1, . . . , s`) demonstrates that

∃ (s1, . . . , s`) ,∀ j ∈ [1, `] : ĉj = ReRandpk (σj(c1, . . . , cn), sj) . (4.2.2)

The completeness condition of a proof system requires that for all x =

(δ, c, ĉ) ∈ LΦ̃, the verification algorithm V of the proof system always ac-

cept. The soundness condition requires that if x 6∈ LΦ̃, then V rejects with

overwhelming probability. Verifiability is formally rephrased in Appendix ??.

Recall that our eventual goal is to construct a public shuffle scheme. Ac-

cording to our definition, the public shuffle scheme makes its shuffle algorithm

run without any secret information. What this means is that we need to use

a different technique from zero-knowledge proofs for checking whether a shuf-

fler works correctly. Indeed it can be easily done by re-computing what the

shuffler computed only using public values. Let denote ε the empty string.

We define a public shuffle relation Φ̃Pub(x,w) with the witness w = ε that

holds if

∃(σ1, . . . , σ`),∀j ∈ [1, `] : ĉj = σj(c1, . . . , cn) (4.2.3)

where x = (δ, c, ĉ) and δ, c with ĉ defined as in Definition 4.2.1. Since σj∈[1,`]

is a public n-argument function, any verifier is able to check whether a public

shuffler is cheating or not. It is straightforward to define completeness and

soundness of a proof system for a public shuffle relation with associated

language LΦ̃Pub
.

41

CHAPTER 4. VERIFIABLE PUBLIC SHUFFLES

Unlinkability. In order to show that a verifiable secret shuffle is unlikable,

Nguyen et al. [NSK04] proposed two security models: Chosen Permutation

Attack (CPAΣ) and Chosen Transcript Attack (CTAΣ). The CPAΣ security

condition requires that even though the adversary A chooses two permuta-

tions of his choice, it should not distinguish which permutation was used to

produce an output list of ciphertexts, with non-negligible advantage. On the

other hand, the CTAΣ security notion states that although the adversary can

query an inversion oracle on (c, ĉ), which will give A a permutation π such

that ĉπ(i) = ReRand(ci, ·) for all i ∈ [1, |c|], it should not have non-negligible

advantage in guessing which of the two permutations in its challenge was

used. The unlinkability security experiment by Nguyen et al. [NSK04] is

shown in Chapter 3.

Obviously a generalized shuffle however does not take a permutation as a

secret parameter, so we cannot directly apply the Nguyen et al.’s model to

prove the unlinkability security of generalized shuffles. Recall that even if a

generalized shuffle scheme requires only a list of randomness in its definition

as a secret parameter, it is a secret shuffle. We need a new one, but this is

not very much different from the Nguyen et al.’s model. For completeness,

we provide the security model for unlinkability of generalized secret shuffles.

Now we consider the case that a generalized shuffle scheme does not

require even a list of randomness, i.e., during shuffling a shuffler does not use

any secret information. We see that we cannot rely on the Nguyen et al.’s

model at all. Instead we define a specific security experiment for generalized

public shuffles.

Definition 4.2.2 (Unlinkability for a Public Shuffle). Let Φ̃E = (Setup, Shuffle,Verify)

be a generalized shuffle scheme and A = (A1,A2) be an adversary.

Experiment ExpPubShf
A (Φ̃E , λ)

42

CHAPTER 4. VERIFIABLE PUBLIC SHUFFLES

δ ← Setup(λ, n, `);

(state, π0, π1,m) ← AOD
1 (δ, n, `) where πi ∈ Σn, i ∈ {0, 1} and

m = (m1, . . . ,mn);

(ĉ,Γ) ← Shuffle(δ, w, c) where w = ε, ci = Encpk
(
mπb(i), ri

)
with

b
$←− {0, 1};

b′ ← AOD
2 (ĉ, c, state);

where OD is the decryption oracle and the empty string is denoted by

ε.

In the experiment above, A2 is not permitted make the query OD(ci) for

all ci∈[1,n] ∈ c. We define the advantage of an adversary A, running in

probabilistic polynomial time and making a polynomial number of queries,

as:

AdvPubShf
A (Φ̃E , λ) =

∣∣∣∣Pr[b = b′]− 1

2

∣∣∣∣ .
A generalized public shuffle scheme is unlikable if the advantage AdvPubShf

A (Φ̃E , λ)

is negligible in the security parameter λ.

4.2.3 Cryptographic Assumption

Let Gq be a cyclic group of order q, not necessarily prime, with a generator

g. Given an algorithm D, that takes as input quadruples of group elements

and outputs a bit, the DDH-advantage of D with a generator g is defined as

Advddh
D,g(λ) :=

∣∣∣Pr
[
α, β

$←− Zq : D(g, gα, gβ, gαβ) = 1
]
−

Pr
[
α, β, γ

$←− Zq : D(g, gα, gβ, gγ) = 1
]∣∣∣ .

If Advddh
D,g is negligible for any polynomial time adversary D and any gener-

ator g, we say that the DDH assumption holds for Gq.

43

CHAPTER 4. VERIFIABLE PUBLIC SHUFFLES

We consider a group Gq where DDH problem is hard. It induces a sub-

group of order q in the group of modular residues Z×p such that q|(p − 1),

‖p‖= 2048, ‖q‖= 256 and a group of points on an elliptic curve with order q

for ‖q‖= 256. For more examples of groups, refer to [Bon98].

4.3 Constructions from Ring Homomorphic

Encryption

In this section we provide two instantiations of generalized public shuffle us-

ing a ring homomorphic cryptosystem. That is, both shuffle schemes work

correctly without a secret parameter such as a private permutation. Let

us denote (ρ, η)-E a ring homomorphic cryptosystem supports ρ additions

and η multiplications on encrypted data. For example, the BGN cryptosys-

tem [BGN05] is an example of (ρ, 1) ring homomorphic cryptosystems.

4.3.1 Construction from
((

n
bn/2c

)
, n− 1

)
-E

The basic intuition of our first generalized shuffle scheme is as follows: Let

n1 =
(

n
bn/2c

)
and n2 = n − 1. Consider a semantically secure cryptosys-

tem (n1, n2)-E on a Unique Factorization Domain (UFD), which allows re-

randomization. Each message mi is encrypted into ci ∈ Enc
(n1,n2)
pk (mi) by

each sender Si for 1 ≤ i ≤ n. After receiving all the ci’s from each sender, a

shuffler computes ĉk = σk(c1, . . . , cn) ∈ Enc
(n1,n2)
pk (σk(m1, . . . ,mn)) where σk

is the k-elementary symmetric polynomial with

σk(x1, . . . , xn) =
∑

1≤i1<...<ik≤n

xi1 · · ·xik ,

for each k ∈ [1, `]. Since the underlying encryption is a ring homomorphism,

the shuffler can carry out such computations over ciphertexts.

44

CHAPTER 4. VERIFIABLE PUBLIC SHUFFLES

Lemma 4.3.1. Assuming that there exists a ring homomorphic cryptosystem

(n1, n2)-E that meets the conditions required in the construction above, our

generalized shuffle scheme based on (n1, n2)-E is correct.

Proof. Decrypting an `-tuple ciphertext {ĉ1, . . . , ĉ`} received from the shuffle

protocol, any party who holds the private key sk learns all the coefficients

of F (t) =
∏n

i=1(t − mi) ∈ R[t]. Since R[t] is also a UFD, F (t) is uniquely

factorized into irreducibles (t−mi). For example, such a computation clearly

runs in polynomial time in log p on R = Fp. Since a factorization algorithm

outputs the same result on inputs F (t) and Fπ(t) =
∏n

i=1

(
t−mπ(i)

)
for

any permutation π of n elements, by the Definition 4.2.1 ĉ1, . . . , ĉ` can be

regarded as a generalized shuffle of c1, . . . , cn.

4.3.2 Construction from (1, n)-E

We base another generalized shuffle scheme on (1, n)-E that is a ring ho-

momorphic cryptosystem that supports 1 addition and n multiplications

on ciphertexts, and re-randomization. In this construction, the intuition

is that a shuffler first publishes all ĉj ∈ Enc
(1,n)
pk (B(αj)), 1 ≤ j ≤ ` for

B(t) =
∏n

i=1(t+mi) where αj’s are chosen uniformly at random from a ran-

dom space. After decrypting properly, B(t) is recovered through Lagrange

interpolation and then factorized into each linear term as above.

Lemma 4.3.2. Assuming that there exists a ring homomorphic cryptosystem

(1, n)-E that meets the conditions required in the construction above, our

generalized shuffle scheme based on (1, n)-E is correct.

Proof. . Suppose that the shuffler follows the above algorithm properly. If

one takes each transformation Ti (1 ≤ i ≤ n) as running a polynomial

45

CHAPTER 4. VERIFIABLE PUBLIC SHUFFLES

reconstruct algorithm and a factorization algorithm in turn, then he can

easily see that the correctness condition – Eq. (4.2.1) holds.

More specifically, anyone who can decrypt takes as input (ĉ1, . . . , ĉ`), and

outputs
∏n

i=1(αj +mi) for each j ∈ [1, `]. Then he reconstructs a polynomial

B(t) =
∏n

i=1(t+mi) using the Lagrange interpolation as follows:

B(t) =
∑̀
j=1

B(αj)
∏

1≤i≤`,i 6=j

t− αi
αj − αi

.

Finally {m1, . . . ,mn} can be recovered by using a factorization algorithm

over the message space.

Computational Complexity. Denote by E and D the cost of an encryp-

tion algorithm and a decryption algorithm for an underlying cryptosystem,

respectively. MD denotes the cost of multiplication in a domain D. Addi-

tionally, M(d) denotes the cost of multiplication of two d-bit integers, and

M(d, p) the cost of multiplication of two polynomials of degree d over Fp.

Each sender only has to encrypt his message once. The shuffler computes

Enc
(1,n)
pk (αj), 1 ≤ j ≤ n. The shuffler should compute

∏n
i=1 Enc

(1,n)
pk (αj +mi)

for each j ∈ [1, n], whose complexity is n E and n(n−1) MFp , if Cpk = Fp. In

summary, the total complexity amounts to O(n)(E)+O(n2) MFp , on R = Fp.

For completeness we present the total complexity including a process

recovering input plaintexts. Anyone who is authorized to decrypt should

decrypt ĉ1, . . . , ĉ` and reconstruct the polynomial B(x) of degree n with

complexity ` D + O(n2) MFp . Further, this incurs O(n2 log p) MFp to fac-

torize using Cantor-Zassenhaus algorithm [CZ81], if R = Fp. Hence, the

total complexity amounts to O(`)(E + D) +O(n2 log p) MFp , on R = Fp.

Ciphertext Size. The number of ciphertexts each sender sends is 1. The

shuffler takes as input n ciphertexts and outputs ` another ciphertexts.

46

CHAPTER 4. VERIFIABLE PUBLIC SHUFFLES

4.4 Constructions from Group Homomorphic

Encryption

The constructions presented in the previous section require the use of a ring

homomorphic encryption scheme, which currently may not be practical, but

apparently would be an overkill for applications such as shuffle. In this

section we show how to construct generalized public shuffle schemes using an

encryption scheme with only a group homomorphism, specifically ElGamal

encryption [El 84]. We extend it to be secure against the malicious adversary

and analyze its security. The first generalized shuffle scheme extensively uses

ElGamal encryption over extension fields. The other shuffle scheme is based

on ElGamal encryption on prime fields, so it is more intuitive than the former

but has a restriction on the size of input messages.

4.4.1 Building Blocks

We present some building blocks used to construct generalized public shuffle

schemes.

ElGamal Encryption over Fp3

An ElGamal encryption scheme over Fp3 consists of the following three poly-

nomial time algorithms (KG,Enc,Dec):

– KG(1λ): The key generation algorithm chooses a large prime p such

that (p3 − 1) = (p − 1)(p2 + p + 1) = 2q1q2 for large primes q1, q2.

Then select an irreducible polynomial ℘(t) ∈ Fp[t] of degree 3 and a

generator g(t) from Gq1q2 which is a multiplicative subgroup of F×p3 of

order q1q2. It computes y(t) = g(t)x mod ℘(t) where a secret key x

47

CHAPTER 4. VERIFIABLE PUBLIC SHUFFLES

is randomly chosen from [0, p3 − 2], and publishes a public key pk =

〈p,Gq1q2 , g(t), y(t), ℘(t)〉.

– Encpk(m(t)): Encryption with the public key pk and message m(t) ∈

Gq1q2 proceeds as follows. First, a random value r ∈ [0, p3−2] is chosen.

The ciphertext is then published as:

C(t) = (v(t), u(t)) := (g(t)r mod ℘(t),m(t) · y(t)r mod ℘(t)) .

– Decsk(C(x)): Suppose that a ciphertext C(t) is encrypted with a pub-

lic key pk and we have a secret key x. Then, the ciphertext can be

decrypted as:

m(t) ≡ u(t) · v(t)−x mod ℘(t).

Parameter Generation. First, we check whether there exists a large

prime p such that p3 − 1 = (p− 1)(p2 + p+ 1), and p = 2q1 + 1 and a prime

q2 = p2 + p + 1. Assuming the Bateman-Horn conjecture [BH62, BS62],

the number of primes of the form (pd − 1)/(p − 1) = ψd(p) not exceeding t,

denoted by H(t), is given by

H(t) ∼ c

∫ t1/2

2

(log u)−2du

for a constant c ≈ 2 where ψd(p) is the d-th cyclotomic polynomial. There-

fore, we see that the probability that ψd(p) is prime for an integer p � t is

significant.

In addition, we need to choose a sufficiently large prime p to resist against

the index-calculus attack. In order to obtain the ElGamal encryption scheme

with semantic security, we take two subgroups Gq1 and Gq2 as follows:

Gq1 = {a(t)2q2 : a(t) ∈ (Fp[t]/℘(t))×} and Gq2 = {a(t)2q1 : a(t) ∈ (Fp[t]/℘(t))×}.

48

CHAPTER 4. VERIFIABLE PUBLIC SHUFFLES

In particular, we set a generator g = g1g2 of Gq1q2 such that 〈g1〉 = Gq1 and

〈g2〉 = Gq2 .

Security Analysis. Now we verify whether the DDH assumption holds in

Gq1q2 .

Lemma 4.4.1. Let Gq1 and Gq2 be groups of prime order q1, q2, respectively,

where gcd(q1, q2) = 1. Suppose that the DDH assumption holds in Gq1 and

Gq2. Then the DDH assumption holds in the group Gq1q2.

Proof. Suppose that there exists an algorithm D and a generator g0 ∈ Gq1q2

such that Advddh
D,g0 is not negligible. We want to show that there exists an

algorithm D′ and generator g1 ∈ Gq1 such that Advddh
D′,g1 is not negligible.

Choose g1 := gq20 and suppose that we are given a quadruple (g1, g
a
1 , g

b
1, g

c
1).

We first choose a triple of random values x, y, z
$←− Zq1q2 . Then compute(

g1g2, g
a
1g

x
2 , g

b
1g
y
2 , g

c
1g
z
2

)
,

and submit the quadruple to D. According that c = ab or c is a random

value in Zq1q2 , the distinguisher will answer the query. Hence, if the output

of D is 1, then ab ≡ c mod q1. A similar argument holds for Gq2 .

Message Encoding. Since a message m ∈ {0, 1}∗ or m ∈ Fp in general,

we need to give a way to encode the message into a message space of our

ElGamal encryption. Without loss of generality, suppose that a message

m ∈ Fp. We write the message m by m(t) := t − m. We then encrypt

m(t) using the ElGmal encryption scheme over Fp3 . As a result, to provide

a natural encoding that embeds an input m(t) ∈ Fp[t] into Gq1q2 , we should

slightly modify the encryption algorithm Encpk(·) as follows:

u(t) = m(t)2 · y(t)r mod ℘(t),

49

CHAPTER 4. VERIFIABLE PUBLIC SHUFFLES

while keeping v(t) unchanged. We can easily check that the modified El-

Gamal encryption scheme with this message encoding is semantically secure

under the DDH assumption in Gq1q2 by Lemma 4.4.1.

Keeping the Shuffler Honest without Zero-knowledge Proofs

One crucial property of our construction allows to prevent a shuffler from

behavior maliciously without depending on zero-knowledge proofs (ZKPs).

This gets rid of the expensive cost of computation and communication re-

quired for ZKPs mandatorily. For this purpose, a verifier only have to re-

compute the shuffler’s output using public values.

4.4.2 A Generalized Public Shuffle Scheme Based on

Polynomial Factorization

We begin with describing extended ElGamal encryption over Fp3 . Then we

present our public shuffle using the extended ElGamal encryption scheme

which is also semantically secure assuming the DDH assumption in a cyclic

subgroup of F×p3 holds.

Extended ElGamal Encryption

Embedding our basic idea into constructing a generalized public shuffle scheme

requires that we modify basic ElGamal encryption over Fp3 given as a build-

ing block above. We just describe modifications for extended ElGamal en-

cryption over Fp3 . According to modified parameters, its encryption and

decryption algorithms should be modified as follows:

– Modifying Key Generation. We run KG(1λ) as in the basic scheme.

Further, choose ` irreducible polynomials ℘1(t), . . . , ℘`(t) ∈ Fp[t] of

50

CHAPTER 4. VERIFIABLE PUBLIC SHUFFLES

degree 3. Find a field isomorphism φj : Fp[t]/℘(t) → Fp[t]/℘j(t) for

j ∈ [1, `]. Finally compute yj = φj(y) for j ∈ [1, `], and publish

pk = (g, y, {yi}`i=1,Gq1q2 , ℘(t), {℘i(t)}`i=1, {φi}`i=1) and keep a secret key

sk = x.

– Modifying Encryption and Decryption Algorithms. We define `-tuple

ElGamal encryption by extending ElGamal encryption over Fp3 . Given

a message m(t) ∈ Fp[t], its encryption algorithm `-Encpk(·) is defined

as follows:

`-Encpk(m(t)) :=
(
gr,m(t)2 · yr1, . . . ,m(t)2 · yr`

)
∈

Fp[t]/℘(t)× Fp[t]/℘1(t)× · · · × Fp[t]/℘`(t).

For decryption, first compute φj(g
r) and m(t)2 ≡ (φj(g

r))−x ·m(t)2 · yrj
mod ℘j. Then we get m(t)2 (mod ℘1 · · ·℘`) using the Chinese remain-

dering algorithm (in short, CRT). After computing square root of the

value, we get m(t),−m(t) (mod ℘1 · · ·℘`). Since m(t) is linear, we can

determine the original message m(t) uniquely.

The Construction

We describe the generalized shuffle using the `-tuple ElGamal encryption

scheme over extension fields.

Setup(1λ, n, `). This algorithm is run by the shuffler and takes a security

parameter λ and the input size n. It outputs a description of σ :

(Gq1q2)
n → Gq1q2 given by (c1, . . . , cn) 7→ c1 · · · cn along with the public

key pk, i.e., δ = (pk, σ).

Shuffle(δ, c). Shuffling with the public parameter δ and a list of ciphertexts

c = (c1, . . . , cn) where ci is an `-tuple ElGamal ciphertext, given from

51

CHAPTER 4. VERIFIABLE PUBLIC SHUFFLES

each sender Si, proceeds as follows. Here ci ∈ `-Encpk(mi(t)) and

`-Encpk(mi(t)) =
(
gri ,mi(t)

2 · yri1 ,mi(t)
2 · yri2 , . . . ,mi(t)

2 · yri`
)

where ri
$←− [0, p3 − 2] for 1 ≤ i ≤ n.

1. The shuffler computes
∏n

i=1 `-Enc(mi(t)) where the product of

`-Enc(mi(t)) means coordinate-wise product. Namely,

n∏
i=1

`-Encpk(mi(t)) =
(
σ (gr1 , . . . , grn) , σ

(
m1(t)2 · yr11 , . . . ,mn(t)2 · yrn1

)
, . . . ,

σ
(
m1(t)2 · yr1` , . . . ,mn(t)2 · yrn`

))
=

g∑n
i=1 ri ,

(
n∏
i=1

mi(t)

)2

· y
∑n
i=1 ri

1 , . . . ,

(
n∏
i=1

mi(t)

)2

· y
∑n
i=1 ri

`

And for all j ∈ [1, `] set

ĉj =

φj (g∑n
i=1 ri

)
,

(
n∏
i=1

mi(t)

)2

· y
∑n
i=1 ri

j

2. The shuffler outputs a list of ciphertexts ĉ = (ĉ1, . . . , ĉ`) along

with a proof Γ = ε.

Verify(δ, c, ĉ,Γ). Upon receiving this tuple, the verifier will first run the ver-

ification algorithm by non-interactively running V(δ, c, ĉ,Γ) – whether

all ĉj ∈ ĉ were correctly computed by using c from senders and δ; if

this fails abort and return reject. Otherwise, output accept.

Theorem 4.4.1. If the shuffler performs correctly the scheme, our public

shuffle scheme is correct.

Proof. We take each transformation Ti (1 ≤ i ≤ n) as running the CRT, a

square root finding algorithm, and a factorization algorithm in turn. The

52

CHAPTER 4. VERIFIABLE PUBLIC SHUFFLES

correctness of shuffle can be easily checked. We know that if one knows the

secret key x, he decryptsφj (g∑n
i=1 ri+γ

)
,

(
n∏
i=1

mi(t)

)2

· y
∑n
i=1 ri+γ

j

to (

∏n
i=1mi(t))

2 mod ℘j(t), 1 ≤ j ≤ `. He then computes (
∏n

i=1mi(t))
2

mod ℘1(t) · · ·℘`(t) from each (
∏n

i=1mi(t))
2 mod ℘j(t) by using a Chinese re-

mainder algorithm. He obtains
∏n

i=1mi(t) by solving square root of (
∏n

i=1mi(t))
2

over Fp[t], since m(t) is monic. Finally a factorization algorithm outputs

{m1, . . . ,mn}.

According to our definitions, the next theorem proves that the generalized

public shuffle satisfies unlinkability if the DDH assumption holds.

Theorem 4.4.2. Assuming the DDH assumption holds, our public shuffle

scheme is unlinkable.

Proof. We now construct a CCA1 adversary Acca that works as follows. A

graphical representation of the attacker is given in Figure 4.1. First, Acca sets

δ = pk and gets the system parameter w as defined in its definition. Then

as a shuffle challenger, B = Acca sends δ, w to the shuffle adversary A. The

adversary A choose a pair of permutations π0, π1 ∈ Σn of his choice and a

list of messages m = (m1, . . . ,mn) ∈ (Mpk)
n, and sends all of these values to

B = Acca. Acca gets a random bit b
$←− {0, 1}, from this choose a permutation

πb. Next, it computes ci = Encd
pk(mπb(i), ri) for 1 ≤ i ≤ n and c =

∏n
i=1 ci,

and sends (c1, . . . , cn) and c to the adversary. The adversary verifies all

computations; if this fails abort. Otherwise it can query the decryption

oracle OD on c. The only problem is that Acca does not have sk. Here, we

use the fact that E is CCA2-secure and so in the CCA1 experiment, Acca

can use the decryption oracle to decrypt everything. However, Acca cannot

53

CHAPTER 4. VERIFIABLE PUBLIC SHUFFLES

query OD on all ci’s and its challenge c∗. This is the important point of this

proof here. After finishing its training phase, the adversary sends to Acca its

challenge consisting of a pair of challenge permutations π∗0, π
∗
1 ∈ Σn and a

list of challenge messages m∗ = (m∗1, . . . ,m
∗
n). On receiving the challenge,

Acca does the following according to a random bit b
$←− {0, 1} and a random

index j
$←− [1, n]:

1. Prepare a pair of challenge messages, m̄0 = 1 and m̄∗1 = mπ∗1(j);

2. Send m̄∗0, m̄
∗
1 to the CCA1 challenger as its challenge;

3. Receive cβ = Encd
pk(m

∗
β, r
∗) where β is a random bit chosen by the

CCA1 challenger;

4. According to its random choice b,

c∗j =

Encd
pk(m

∗
π0(j), r

∗
i) if b = 0

cβ if b = 1

5. For all i = [1, n]\{j}, compute c∗i = Encd
pk

(
m∗πb(i), r

∗
i

)
;

6. Compute c∗ =
∏n

i=1 c
∗
i and send it to the adversary.

Note that the adversary is not allowed to query OD on all c∗i ’s and the

challenge ciphertext c∗. Further, due to the restriction of CCA1 experiment

the adversary cannot utilize the decryption oracle any more. When the

adversary sends its guess b′ to the shuffle challenger, Acca outputs its guess

β′ = b′ to the CCA1 challenger.

From here on, we can see that Acca perfectly simulates the generalized

public shuffle experiment for the adversary A. So far we have discussed the

attack strategy by Acca, and so we now proceed to prove that Acca outputs

54

CHAPTER 4. VERIFIABLE PUBLIC SHUFFLES

the correct β with probability ε(λ)+1
2

which is non-negligible if ε(λ) is non-

negligible.

Define Fail to be the event causing Acca to output a random bit in

its attack. Further, we say that the generalized public shuffle experiment

ExpPubShf
A (Φ̃E , λ) = 1 iff b = b′. We have

Pr
[
ExpPubShf

A (Φ̃E , λ) = 1
]

= Pr
[
ExpPubShf

A (Φ̃E , λ) = 1|¬Fail
]
· Pr[¬Fail] +

Pr
[
ExpPubShf

A (Φ̃E , λ) = 1|Fail
]
· Pr[Fail].

Now, by the definition of Fail, we have that Pr
[
ExpPubShf

A (Φ̃E , λ) = 1|Fail
]

=

1
2
. It can be seen that the probability Acca outputs an incorrect bit with Fail

not happening is negligible, and

Pr
[
ExpPubShf

A (Φ̃E , λ) = 1|¬Fail
]
≥ 1− negl(λ)

for some negligible function negl(·). Then we compute Pr[Fail] and Pr[¬Fail].

By the assumption regarding A, we assume that the advantage A breaks our

shuffle is ε(λ). Thus, Pr[¬Fail] = ε(λ). In contrast, when A fails to output

a correct bit, then Acca always outputs an incorrect bit. Thus, Pr[Fail] =

1− ε(λ). Combining the above, we have

Pr
[
ExpPubShf

A (Φ̃E , λ) = 1
]

= (1− negl(λ)) · ε(λ) +
1

2
· (1− ε(λ))

= ε(λ)− negl′(λ) +
1

2
− ε(λ)

2

=
ε(λ) + 1

2
− negl′(λ).

Thus, if ε(λ) is non-negligible, thenAcca succeeds in the generalized public

shuffle experiment with non-negligible probability.

Theorem 4.4.3. Assuming the DDH assumption holds, our public shuffle

scheme is verifiable.

55

CHAPTER 4. VERIFIABLE PUBLIC SHUFFLES

Figure 4.1: Graphical View of Security

Proof. It follows from the fact that completeness and soundness conditions

can be easily checked by the verifier’s re-computation.

Computational Complexity. Each sender encrypts his plaintext ` times

with O(` log p) MFp complexity. The shuffler computes the product of en-

crypted data. It takes O(n`) MFp . The shuffler computes isomorphism

φj(g(t)
∑n
i=1 ri) = g(φj(t))

∑n
i=1 ri , 1 ≤ j ≤ `, with O(`) MFp using Horner’s rule.

56

CHAPTER 4. VERIFIABLE PUBLIC SHUFFLES

The decryption requires O(` log p) MFp and
∏n

i=1(mi(t))
2 mod

∏`
i=1 ℘i(t)

is obtained by using a fast CRT in O(` log `) MFp . Solving square root of

(
∏n

i=1mi(t))
2

mod
∏`

i=1 ℘i(t) requiresO(` log p) MFp , and factoring
∏n

i=1mi(t)

over Fp[t] incurs O(n2 log p) MFp . Therefore, the total complexity amounts

to O(n2 log p) MFp .

Ciphertext Size. The number of ciphertexts each sender transmits is O(`)

and the shuffler takes as input O(n`) ciphertexts and outputs O(`) cipher-

texts.

Keeping the Sender Honest

To prevent the sender himself from attempting to cheat the shuffle, we require

that each sender should be prepared to give a zero-knowledge proof of the

plaintext of his ciphertext. For example, given an ElGamal ciphertext c =

(u, v) = (gr,myr) under the public key y, a sender prover knowledge of m by

instead proving knowledge of r.

It is unlikely to detect all malicious behavior of dishonest senders during

encoding and encrypting their messages. Instead we can deal with the case

where a malicious sender replaces at most α positions with random values

of his choice instead of all the same mi’s. When decrypting the output

of the shuffle, after applying the CRT, we will run the extended Euclidean

algorithm and apply the rational reconstruction theorem [Sho09, Sec. 4.6].

If the number of malicious positions is at most α, we can efficiently recover

the original value mi from its malicious encoding. The polynomial analog

takes the same approach [Sho09, Sec. 17.5].

57

CHAPTER 4. VERIFIABLE PUBLIC SHUFFLES

4.4.3 A Generalized Public Shuffle Scheme Based on

Integer Factorization

In this section we present another public shuffle which can work correctly and

efficiently, especially when each user has short messages enough to support

recovering original messages in polynomial time. However, the intuition is

the same as the public shuffle scheme given in Section 4.4.2.

This construction uses `-tuple ElGamal encryption extended by standard

ElGamal encryption over prime fields. We just describe the differences com-

pared to that used in Section 4.4.2: (1) Since a field isomorphism is not

available, each user should send ` full ElGamal ciphertexts to a shuffler.

Namely, the number of group elements transmitted by each sender is 2`.

Recall that the previous construction allows a sender to send (` + 1) group

elements; (2) For unique factorization over the integers, we should provide a

specific encoding algorithm. For example, the encoding algorithm converts

an input message into a prime number in a message space. If no confusion

arises, we abuse notation and use the same symbol for extended ElGamal

encryption. The full description of ElGamal and its extension over prime

fields are as follows.

ElGamal and Its Extension over Prime Fields

The description of the ElGamal encryption scheme E = (KG,Enc,Dec) over

prime fields consists of the following algorithms. Let Fp be a prime field and

Gq be a multiplicative cyclic subgroup of order q in F×p , where p = 2q + 1.

Assume that the DDH assumption holds in Gq.

– KG(1λ). Choose a generator g of Gq. Choose a random x ∈ [0, q − 2]

and compute y = gx (mod p). A public key is pk = (p, g, y,Gq) and a

58

CHAPTER 4. VERIFIABLE PUBLIC SHUFFLES

secret key is sk = x.

– Encpk(m). Choose random r ∈ [0, q − 2] and compute gr and m · yr.

The ciphertext of m ∈ Gq is given by (v, u) = (gr,m · yr).

– Decsk(v, u). Compute m = v−xu (mod p).

If the input message m ∈ Gq, then the encryption algorithm simply con-

tinues to the next step. However, if m 6∈ Gq, it is required to convert m

into an element of the group. Thus, we need to modify its encryption algo-

rithm into computing u = m2 · yr (mod p). Also we define `-tuple ElGamal

encryption as its extension. That is, for m ∈Mpk

`-Encpk(m) = (gr1,m
2yr1, g

r
2,m

2yr2, . . . , g
r
` ,m

2yr`) ∈ F2
p1
× F2

p2
× · · · × F2

p`
,

where p1 < p2 < · · · < p` are add primes and yj = gxj for all j ∈ [1, `].

Actually, since we use factorization to get message, message space must

be prime set which is smaller than p1. Instead we use encoding to remove

restriction of plaintexts. There is a plaintext incoding algorithm Ω to make

prime number. We instantiate an message encoding algorithm Ω as follows:

We first assign a prime number to a message by a small-sized random padding

and check whether the padded message is a prime number. Namely, we

append a padding s to the message m̄, and then check whether m = m̄ ‖ s

is a prime number. When we define m̄ ‖ s = m̄log s + s, the size of s is

determined by the distribution of primes. Let π(m) be the number of primes

equal to or less than m. Huxley [Hux72] proved that

π(m+ ∆(m))− π(m) ∼ ∆(m)

logm

is true for almost all x if ∆(m) = m1/6+ε (ε > 0 fixed). (See [Mai85] for a

survey on this topic.) This result implies that there exists a prime number

if ‖s‖= dκ
6
e with overwhelming probability, where κ =‖m‖.

59

CHAPTER 4. VERIFIABLE PUBLIC SHUFFLES

The Construction

The following is the description of the generalized shuffle using the `-tuple

ElGamal encryption scheme over prime fields.

Setup(1λ, n, `). This algorithm takes as input a security parameter λ and size

parameters n, `, outputs a public parameter δ = (pk).

Shuffle(δ, c). Shuffling with the public parameter δ and a list of ciphertexts

c = (c1, . . . , cn) where ci ∈ `-Encpk(mi) from a sender Si, proceeds as

follows. Here `-Encpk(mi) = {(vij, uij)}`j=1 with vij = g
rij
j , uij = m2

i ·y
rij
j .

1. The shuffler computes and outputs

(ĉ1, . . . , ĉ`) =

((
n∏
i=1

vi1,
n∏
i=1

ui1

)
, . . . ,

(
n∏
i=1

vi`,
n∏
i=1

ui`

))

with a proof Γ = ε.

Verify(δ, c, ĉ,Γ). The verification algorithm checks if each ĉj ∈ ĉ was cor-

rectly computed by using c and δ; if this fails abort and return reject.

Otherwise, output accept.

Theorem 4.4.4. If the shuffler performs correctly, our public shuffle scheme

is correct.

Proof. Suppose that the shuffler follows the above algorithm properly. We

take each transformation Ti (1 ≤ i ≤ n) as running the CRT, a square root

finding algorithm and a factorization algorithm in turn. Then the correctness

of shuffle can be easily checked. Specifically, a decryption algorithm takes

as input `-tuple ElGamal ciphertexts (
∏n

i=1 vij,
∏n

i=1 uij) for 1 ≤ j ≤ `, and

60

CHAPTER 4. VERIFIABLE PUBLIC SHUFFLES

outputs

M1 = (m1m2 · · ·mn)2 (mod p1)

...

Mn = (m1m2 · · ·mn)2 (mod p`)

M = (m1m2 · · ·mn)2 mod p1 · · · p` is obtained by using the CRT. It com-

putes square roots of M modular p1 · · · p`, say z1 = m1 · · ·mn and z2 =

−m1m2 · · ·mn, respectively. Since all mi’s are odd prime numbers, the least

significant bit (LSB) of z1 is 1. On the other hand, the LSB of z2 is 0 since

p1 · · · p` − m1 · · ·mn = −m1 · · ·mn (mod p1 · · · p`). Hence, it can uniquely

determine which one is a correct product of {m1, . . . ,mn}. Finally it runs

a factorization algorithm for m1 · · ·mn over Z using trial division since mi’s

are small.

Further, with respect to unlinkability and public verifiability it is straight-

forward from a similar argument proved in the previous section.

Computational Complexity. Let us define p̌ = max{p1, . . . , p`}, and p̂ =

min{p1, . . . , p`}. Each sender encrypts his plaintext ` times withO(` log p̌) MFp

complexity. The shuffler computes (
∏n

i=1 vij,
∏n

i=1 uij) for 1 ≤ j ≤ ` with

O(`2) MFp complexity. Decryption requires O(` log p̌) MFp complexity, and

computing the CRT requires O(M(log p̌) log log p̌)MFp to get (m1 · · ·mn)2

mod p1 · · · p`. Solving square roots of (m1 · · ·mn)2 mod p1 · · · p` incurs

O(n log3 p̌)) MFp . Since the message space is small, factorizing m1 · · ·mn

using trial division takes O(nm̄ log p̌) when messages are taken to be a prime

less than m̄

Ciphertext Size. The number of ciphertexts each user sends is ` and the

shuffler takes as input n` ciphertexts and outputs ` ciphertexts.

61

CHAPTER 4. VERIFIABLE PUBLIC SHUFFLES

Small Message Case. If the message space is small, the shuffle algo-

rithm may output (ĉ1, . . . , ĉ`) for ` < n. This reduces the computation and

transmission cost. Suppose each message is encoded into a prime of κ bits.

Decrypting (ĉ1, . . . , ĉ`) gives (m1 · · ·mn)2 mod p1 · · · p`. One can recover an

integer m1 · · ·mn when 2nκ < `‖p‖, i.e. ` > (2nκ)/‖p‖.

For example, consider κ = 10, n = 104 and ‖p‖= 2048. Then it is enough

to take ` = 98, which is much less than n = 104.

62

Chapter 5

Conclusion and Further Work

In this dissertation, we describe the definition of verifiable secret shuffles,

its security model, and limitations that they have. Then we studied how

to construct a public shuffle, which does not require any private setup for

generating a random permutation. For this purpose, we proposed two con-

structions. Our constructions use ElGamal encryption schemes,but one is

based on integer factorization which requires exponential complexity in gen-

eral, the other is based on polynomial factorization. Further, we exploit a

field isomorphism to reduce the size of ciphertexts.

However, still there are two remaining open problems. The first one is

that our schemes let each sender transmit O(n) ciphertexts to a shuffler.

Therefore, the total transmission complexity is O(n2). Thus, how to con-

struct a public shuffle scheme with O(n) transmission complexity in total is

an interesting problem. The second one is to apply our technique to Adida

and Wikström’s work. Namely, how to generate an obfuscated permutation

matrix by using our scheme is also an interesting question.

63

Bibliography

[Abe98] Masayuki Abe. Universally verifiable mix-net with verification

work indendent of the number of mix-servers. In Kaisa Nyberg,

editor, Advances in Cryptology-EuroCrypt, LNCS 1403, pages

437–447, 1998.

[Abe99] Masayuki Abe. Mix-networks on permutation networks. In

Kwok-Yan Lam, Eiji Okamoto, and Chaoping Xing, editors,

Advances in Cryptology-AsiaCrypt, LNCS 1716, pages 258–273,

1999.

[AH01] Masayuki Abe and Fumitaka Hoshino. Remarks on mix-network

based on permutation networks. In Kwangjo Kim, editor, Public

Key Cryptography, LNCS 1992, pages 317–324, 2001.

[AW07] Ben Adida and Douglas Wikström. How to shuffle in public. In

Salil Vadhan, editor, TCC, LNCS 4392, pages 555–574, 2007.

[BG12] Stephanie Bayer and Jens Groth. Efficient zero-knowledge ar-

gument for correctness of a shuffle. In David Pointcheval and

Thomas Johansson, editors, Advances in Cryptology-EuroCrypt,

LNCS 7237, pages 263–280, 2012.

64

BIBLIOGRAPHY

[BGN05] Dan Boneh, Eu-Jin Goh, and Kobbi Nissim. Evaluating 2-DNF

formulas on ciphertexts. In Joe Kilian, editor, TCC, LNCS 3378,

pages 325–341, 2005.

[BH62] Paul Bateman and Roger Horn. A heuristic asymptotic formula

concerning the distribution of prime numbers. Mathematics of

Computation, 16:363–367, 1962.

[Bon98] Dan Boneh. The decision Diffie-Hellman problem. In Joe Buhler,

editor, ANTS, LNCS 1423, pages 48–63, 1998.

[BS62] Paul Bateman and Rosemarie Stemmler. Waring’s problem for

algebraic number fields and primes of the form (pr− 1)/(pd− 1).

Illinois J. Math., 6(1):142–156, 1962.

[BY86] Josh Benaloh and Moti Yung. Distributing the power of a gov-

ernment to enhance the privacy of voters. In PODC, pages 52–62,

1986.

[Cha81] David Chaum. Untraceable electronic mail, return addresses, and

digital pseudonyms. Communications of the ACM, 24(2), 1981.

[CP92] David Chaum and Torben Pedersen. Wallet databases with

observers. In Ernest Brickell, editor, Advances in Cryptology-

Crypto, LNCS 740, pages 89–105, 1992.

[CZ81] David Cantor and Hans Zassenhaus. A new algorithm for factor-

ing polynomials over finite fields. Mathematics of Computation,

36(154):587–592, 1981.

65

BIBLIOGRAPHY

[Dam91] Ivan Damg̊ard. Towards practical public key systems secure

against chosen ciphertext attacks. In Joan Feigenbaum, editor,

Advances in Cryptology-Crypto, LNCS 576, pages 445–456, 1991.

[DH76] Whitfield Diffie and Martin Hellman. New directions in cryptog-

raphy. IEEE Transactions on Information Theory, IT-22(6):644–

654, 1976.

[DJ01] Ivan Damg̊ard and Mads Jurik. A generalisation, a simplification

and some applications of paillier’s probabilistic public-key sys-

tem. In Kwangjo Kim, editor, Public Key Cryptography, LNCS

1992, pages 119–136, 2001.

[DK00] Yvo Desmedt and Kaoru Kurosawa. How to break a practical

mix and design a new one. In Bart Preneel, editor, Advances in

Cryptology-EuroCrypt, LNCS 1807, pages 557–572, 2000.

[DMS04] Roger Dingledine, Nick Mathewson, and Paul Syverson. Tor:

The second-generation onion router onion router. In USENIX

Security Symposium, pages 303–320, 2004.

[El 84] Taher El Gamal. A public key cryptosystem and a signa-

ture scheme based on discrete logarithms. In G. Blakely and

David Chaum, editors, Advances in Cryptology-Crypto, LNCS

196, pages 10–18, 1984.

[FMM+02] Jun Furukawa, Hiroshi Miyauchi, Kengo Mori, Satoshi Obana,

and Kazue Sako. An implementation of a universally verifiable

electronic voting scheme based on shuffling. In Matt Blaze, edi-

tor, Financial Cryptography, LNCS 2357, pages 16–30, 2002.

66

BIBLIOGRAPHY

[FMS10] Jun Furukawa, Kengo Mori, and Kazue Sako. An implementa-

tion of a mix-net based network voting scheme and its use in

a private organization. In David Chaum, Markus Jakobsson,

Ronald Rivest, Peter Ryan, Josh Benaloh, Miroslaw Kutylowski,

and Ben Adida, editors, Towards Trustworthy Elections, LNCS

6000, pages 141–154, 2010.

[FS87] Amos Fiat and Adi Shamir. How to prove yourself. practi-

cal solutions to identification and signature problems. In An-

drew Odlyzko, editor, Advances in Cryptology-Crypto, LNCS

263, pages 186–189, 1987.

[FS01] Jun Furukawa and Kazue Sako. An efficient scheme for proving

a shuffle. In Joe Kilian, editor, Advances in Cryptology-Crypto,

LNCS 2139, pages 368–387, 2001.

[Fur05] Jun Furukawa. Efficient and verifiable shuffling and shuffle-

decryption. IEICE transactions, 88-A(1):172–188, 2005.

[GI08] Jens Groth and Yuval Ishai. Sub-linear zero-knowledge argument

for correctness of a shuffle. In Nigel Smart, editor, Advances in

Cryptology-EuroCrypt, LNCS 4965, pages 379–396, 2008.

[GL07] Jens Groth and Steve Lu. Verifiable shuffle of large size cipher-

texts. In Tatsuaki Okamoto and Xiaoyun Wang, editors, Public

Key Cryptography, LNCS 4450, pages 377–392, 2007.

[GM82] Shafi Goldwasser and Silvio Micali. Probabilistic encryption and

how to play mental poker keeping secret all partial informa-

tion. In Harry Lewis, Barbara Simons, Walter Burkhard, and

Lawrence Landweber, editors, STOC, pages 365–377, 1982.

67

BIBLIOGRAPHY

[GM84] Shafi Goldwasser and Silvio Micali. Probabilistic encryption. J.

Comput. Syst. Sci., 28(2):270–299, 1984.

[Gro03] Jens Groth. A verifiable secret shuffle of homomorphic encryp-

tions. In Yvo Desmedt, editor, Public Key Cryptography, LNCS

2567, pages 145–160, 2003.

[Gro10] Jens Groth. A verifiable secret shuffle of homomorphic encryp-

tions. Journal of Cryptology, 23(4):546–579, 2010.

[GT03] Shafi Goldwasser and Yael Tauman Kalai. On the (in)security of

the fiat-shamir paradigm. In FOCS, pages 102–113, 2003.

[Hux72] Martin Huxley. On the difference between consecutive primes.

Inventiones Math., 15:164–170, 1972.

[JJR02] Markus Jakobsson, Ari Juels, and Ronald Rivest. Making mix

nets robust for electronic voting by randomized partial checking.

In Dan Boneh, editor, USENIX Security Symposium, pages 339–

353, 2002.

[Mai85] Helmut Maier. Primes in short intervals. Michigan Mathematical

Journal, 32(2):221–225, 1985.

[Nao03] Moni Naor. On cryptographic assumptions and challenges. In

Dan Boneh, editor, Advances in Cryptology-Crypto, LNCS 2729,

pages 96–109, 2003.

[Nef01] C. Andrew Neff. A verifiable secret shuffle and its application to

e-voting. In ACM Conference on Computer and Communications

Security, pages 116–125, 2001.

68

BIBLIOGRAPHY

[Nef03] C. Andrew Neff. Verifiable mixing (shuffling) of ElGamal pairs,

2003.

[NSK04] Lan Nguyen, Reihaneh Safavi-Naini, and Kaoru Kurosawa. Ver-

ifiable shuffles: A formal model and a paillier-based efficient con-

struction with provable security. In Markus Jakobsson, Moti

Yung, and Jianying Zhou, editors, ACNS, LNCS 3089, pages 61–

75, 2004.

[NSK06] Lan Nguyen, Reihaneh Safavi-Naini, and Kaoru Kurosawa. Ver-

ifiable shuffles: a formal model and a paillier-based three-round

construction with provable security. International Journal of In-

formation Security, 5(4):241–255, 2006.

[OS05] Rafail Ostrovsky and William Skeith III. Private searching on

streaming data. In Victor Shoup, editor, Advances in Cryptology-

Crypto, LNCS 3621, pages 223–240, 2005.

[Pai99] Pascal Paillier. Public-key cryptosystems based on composite

degree residuosity classes. In Jacques Stern, editor, Advances in

Cryptology-EuroCrypt, LNCS 1592, pages 223–238, 1999.

[PBDV04] Kun Peng, Colin Boyd, Ed Dawson, and Kapalee Viswanathan.

A correct, private, and efficient mix network. In Feng Bao,

Robert Deng, and Jianying Zhou, editors, Public Key Cryptogra-

phy, LNCS 2947, pages 439–454, 2004.

[Ped91] Torben Pedersen. Non-interactive and information-theoretic se-

cure verifiable secret sharing. In Joan Feigenbaum, editor, Ad-

vances in Cryptology-Crypto, LNCS 576, pages 129–140, 1991.

69

BIBLIOGRAPHY

[PRT12] Udaya Parampalli, Kim Ramchen, and Vanessa Teague. Effi-

ciently shuffling in public. To appear in PKC’12, 2012.

[RSA78] Ronald Rivest, Adi Shamir, and Leonard Adleman. A method for

obtaining digital signatures and public-key cryptosystems. Com-

munications of the ACM, 21(2):120–126, 1978.

[Sho09] Victor Shoup. A conputational introduction to number theory

and algebra. Cambridge University Press, 2nd edition, 2009.

[SK95] Kazue Sako and Joe Kilian. Receipt-free mix-type voting scheme

– a practical solution to the implementation of a voting booth.

In Louis Guillou and Jean-Jacques Quisquater, editors, Advances

in Cryptology-EuroCrypt, LNCS 921, pages 393–403, 1995.

[Sta05] Heiko Stamer. Efficient electronic gambling: An extended imple-

mentation of the toolbox for mental card games. In Christopher

Wolf, Stefan Lucks, and Po-Wah Yau, editors, WEWoRC, LNI

74, pages 1–12, 2005.

[TW10] Björn Terelius and Douglas Wikström. Proofs of restricted shuf-

fles. In Daniel Bernstein and Tanja Lange, editors, Africacrypt,

LNCS 6055, pages 100–113, 2010.

[Wik02] Douglas Wikström. The security of a mix-center based on a

semantically secure cryptosystem. In Alfred Menezes and Palash

Sarkar, editors, Indocrypt, LNCS 2551, pages 368–381, 2002.

[Wik05] Douglas Wikström. A sender verifiable mix-net and a new proof

of a shuffle. In Bimal Roy, editor, Advances in Cryptology-

AsiaCrypt, LNCS 3788, pages 273–292, 2005.

70

BIBLIOGRAPHY

[Wik09] Douglas Wikström. A commitment-consistent proof of a shuffle.

In Colin Boyd and Juan Manuel González Nieto, editors, ACISP,

LNCS 5594, pages 407–421, 2009.

[Wik10] Douglas Wikström. Verificatum. In

http://www.verificatum.com/, 2010.

71

국문초록

본 논문은 공개 셔플 (Shuffle) 을 설계하고 구축하는 방법에 대해서 제

시한다. 일반적으로 표준 셔플은 메시지를 셔플하는 주체가 랜덤 치환

(Permutation) 과 랜덤값을 안전하게 비밀로 유지하는 것을 요구한다. 그

러나, 이러한 비밀값들을 항상 안전하게 유지할 수 있다고 기대하는 것은

경우에따라매우강한가정일수있으며,심지어현실에서는적용할수없

는 경우가 있다. 그래서 본 연구에서 이러한 가정을 약화시키면서 안전하

게 셔플을 수행할 수 있는 방법에 대해서 제시한다.

셔플의 대표적인 응용인 믹스넷 (Mix-net) 은 익명화 (Anonymization)

을 위한 보편적 수단의 하나이다. 믹스넷은 입력된 암호화된 값을 치환하

고 재암호화하거나 복호화하는 방법을 많이 이용된다. 만약 믹스넷을 구

성하는 믹스서버가 적어도 하나 정직하게 행동한다면 입력과 출력의 연결

성은 안전하게 숨겨질 것이다. 그래서 연결성이 안전하게 숨겨지는 것을

보장되기 위해서는 믹스를 담당하는 서버가 믹스 프로토콜을 따라 동작하

도록 보장할 필요가 있다. 이를 위한 별도의 수단으로 영지식증명을 사용

하는데, 영지식 증명은 연산량과 통신량의 복잡도가 높은 것으로 알려져

있다.

2007년 TCC에서 Adida와Wikström에의해서공개적으로셔플을할수

있는안전성이증명가능한방법이제시되었다. 그들의방법은셔플을수행

하는 주체가 일체의 비밀정보를 모르는 상태에서 셔플을 할 수 있도록 한

다. 이러한목적을위해서그들의기법은암호화된치환행렬 (Permutation

Matrix) 을 공개하면 셔플을 필요로 하는 사용자들이 공개된 치환행렬을

이용하여 암호화된 값들을 셔플할 수 있다. 즉석 (On-the-fly) 에서 셔플을

해야 하는 기존의 기법에 비해서 그들의 방법은 믹스넷을 구축할때 복호

화하는 알고리즘과 복잡도만 고려하는 것을 허용한다. 그러나, 그들의 기

법이 공개적으로 셔플을 하는 것을 가능하게 했지만, 랜덤 치환과 랜덤값

BIBLIOGRAPHY

은 여전히 셔플을 생성하는 제 3의 신뢰기관이 알아야 하는 상황으로 변경

되었을 뿐 비밀값 자체를 시스템에서 제거한 것은 아니다. 또한 셔플을 공

개할 때 정당하게 생성된 셔플이라는 것을 증명하기 위해 여전히 영지식

증명도 필요하다.

본 논문에서는 기존 셔플–비밀셔플이나 Adida와 Wikström의 기법–과

달리 랜덤 치환과 랜덤값을 사용하지 않고 공개적으로 셔플을 허용하는

공개 셔플 (Public Shuffle) 을 제안한다: n개의 암호문 (c1, . . . , cn)이 주어

지면 우리가 제시한 기법은 fi(c1, . . . , cn), 1 ≤ i ≤ `, 을 계산한다, 여기서

fi(x1, . . . , xn)는 x1, . . . , xn을 매개변수로 하는 대칭함수이다. 본 논문은 적

용되는 대칭함수에 따라 크게 두 가지 설계가 가능함을 보인다. 첫번째

는 환준동형 (Ring Homomorphic) 암호시스템을 사용하는 것이고 장점으

로는상수크기의암호문만요구한다는것이다. 두번째는군준동형 (Group

Homomorphic) 암호시스템을 사용하는 것으로 사용자수에 선형 크기의 암

호문 개수를 요구한다. 그러나 두 기법 모두 랜덤 치환이나 랜덤값을 요구

하지않으며,아울러영지식증명을사용하지않고공개적으로셔플이옳게

이루어졌는지 확인할 수 있는 방법을 제공한다.

주요어휘: 셔플, 검증가능한 비밀셔플, 공개셔플, 믹스넷, ElGamal 암호

학번: No. 20008-30081

73

감사의 글

아직도 많이 부족한 저의 지도교수가 되어 주시고, 박사학위기간 동안 공

부하고 연구할 수 있도록 물심양면(物心兩面)으로 지원하고 가르침을 주

신 천정희(千丁熙) 선생님께 먼저 진심으로 감사드립니다. 바쁘신 와중에

심사위원으로 참여하여 주신 김명환 선생님, 이인석 선생님, 이향숙 선생

님, 특히 먼곳에서 기꺼이 참여하여 주신 김용대 선생님께 감사드립니다.

암호학적 난제 연구단의 모든 동료들도 고맙습니다: 김민규, 김성욱,

김홍태,이형태,김태찬,류한솔,김진수,홍현숙,정희원,그리고이주은씨:

모두 보고 싶을 겁니다! Minnesota에서 지내는 동안 여러가지 도움을 준

박동철, Abadelaziz Mohaisen에게도 감사의 마음을 전합니다.

함께 연구하고 여러가지 助言을 아끼지 않았던 입학동기 이형태와 박

사학위기간 내내 성실하고 열정적인 모습으로 자극을 준 배영진, 그리고

사소한 일까지 챙겨준 팀장 김태찬에게 이 글을 빌어 고맙다는 말을 전합

니다. 또한 자연스런 삶을 모습을 보여주시는 형석형님과 대인이신 종승

형님께도 감사하는 마음을 잊을 수 없습니다. 함께 있는 것만으로도 힘이

되는친구들–재철,재형과문선도고맙다는말을받아야합니다. 열심히살

고 있는 학수와 지영도 마찬가지입니다. 힘들때 이들의 그늘이 있어 쉬었

다 갈 수 있었습니다.

끝으로 공부하는 동안 내내 애정과 격려의 말로 묵묵히 기다려준 제 아

내, 은영에게 온 마음으로 고맙다는 말을 하고 싶습니다. 또한 함께 힘들

어 하신 어머니와 누이–세종엄마, 그리고 묵묵히 지켜봐 주신 장인과 장모

님께도 감사드립니다.

學而時習之면 不亦說乎아!

〈〈論語-學而〉〉

	Abstract
	Introduction
	A Brief History of Shuffles
	Why Shuffling in Public Hard?
	Cryptographic Shuffle Schemes
	Contributions of This Work
	Our Definitional Approach
	Our Constructions

	Organization

	Preliminaries
	Basics
	Public Key Encryption
	IND-CPA Security
	IND-CCA Security

	Homomorphic Public-key Encryption
	Zero-Knowledge Proofs
	Zero-Knowledge Variants
	Proof of Knowledge

	Public-Key Obfuscation

	Verifiable Secret Shuffles: A Review
	Introduction
	Notation and Definitions
	Security
	Verifiability for Secret Shuffles
	Unlinkability Experiments

	Selected Prior Work
	Furukawa-Sako Protocol
	Groth Protocol

	Public Shuffles with Private Permutation
	Introduction
	Adida and Wikström Protocol

	Verifiable Public Shuffles
	Introduction
	Generalized Shuffle
	Syntax of Generalized Shuffle
	Security Model
	Cryptographic Assumption

	Constructions from Ring Homomorphic Encryption
	Construction from (GTS@()n"4262304 n/2"5263305 ,n-1)-E
	Construction from (1,n)-E

	Constructions from Group Homomorphic Encryption
	Building Blocks
	A Generalized Public Shuffle Scheme Based on Polynomial Factorization
	A Generalized Public Shuffle Scheme Based on Integer Factorization

	Conclusion and Further Work
	Abstract (in Korean)
	Acknowledgement (in Korean)

