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Private Web Search with an Expected Constant
Round
Myungsun Kim

Abstract—Web searching is becoming an essential activity because it is often the most effective and convenient way of finding
information. However, a Web search can be a threat to the privacy of the searcher because the queries may reveal sensitive
information about the searcher. Private Web search (PWS) solutions allow users to find information on the Internet while preserving
their privacy. Here, privacy means maintaining the confidentiality of the identity of the communicating users. According to their
underlying technology, existing PWS solutions can be divided into three types: proxy-based solutions, obfuscation-based solutions, and
cryptography-based solutions. Of these, cryptography-based PWS (CB-PWS) systems are particularly interesting because they
provide strong privacy guarantees in the cryptographic sense. In this paper, we present a round-efficient CB-PWS protocol that
preserves computational efficiency compared to other known CB-PWS systems. Assuming a broadcast channel, our protocol is a
four-round cryptographic scheme that requires O(n) communication complexity. However, if only point-to-point interaction is available,
with the users emulating the broadcast channel, our protocol requires an expected O(1)-round complexity and the same computation
and communication overhead. Further analyzing the efficiency of our protocol shows that our proposal requires only 3n modular
exponentiations for n users. To evaluate the security of our protocol, we demonstrate that our construction is secure in terms of a
semi-honest model. We then discuss how to enhance its security to render it secure in the presence of malicious adversaries. We
provide a specific protocol for managing users’ groups, which is also an advantage over existing systems.

Index Terms—Private Web search, secret sharing, homomorphic encryption, round efficiency
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1 INTRODUCTION

U Sing a private Web search (PWS) prevents Web-search
service providers such as Google and Bing from build-

ing user profiles while still allowing the users to enjoy full
search functionality when performing Web searches. User
profiling is usually defined as the process of implicitly
developing a user profile from the search-engine queries
submitted by the user. The service provider can then use
user-profiling information, which might include the users
private interests and preferences, to assign the user to a
predefined user class, such as a demographic or taste cate-
gory, or to capture the online behavior of the user. Although
user profiles may enable service providers to offer a better
service, clearly this raises privacy concerns because sensitive
information, such as a user’s name and location, can be
inferred from search-engine queries. In addition to the query
terms themselves, other information, such as the source IP
address and timestamp, may reveal sensitive information
about the user.

Various approaches have been proposed to address this
problem. Balsa et al. [1] identified three types of PWS pro-
tocols, in terms of the key techniques used for anonymity.
First, if a PWS solution introduces a proxy server to submit
query words on behalf of the user, it is called a proxy-
based technique (e.g., [2]–[4]). A second group of PWS
solutions enables users to submit a collection of queries in
such a way that the real query term is buried among many
other (fake) terms, thereby obscuring the identity of the real
term. This is called obfuscation-based PWS (e.g., [5]–[7]).
The third approach relies on cryptographic tools to eliminate
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the possibility of linking users to their query terms. This is
called cryptography-based PWS (CB-PWS) (e.g., [8]–[11])
and is used in our proposal.

In this paper, we are particularly interested in construct-
ing an efficient CP-PWS protocol. Our choice relates to our
technical standpoint on the trade-off between performance
and security. Controversially, PWS solutions based on proxy
or obfuscation techniques place more importance on perfor-
mance than on security. Therefore, we can say that their goal
is to find a way of enhancing security while not affecting the
performance of legacy Web-searching services. On the other
hand, CB-PWS solutions pursue strong security in spite
of the high possibility of degrading search performance.
Accordingly, PWS protocols of this type aim to find methods
that minimize the performance degradation.

Our goal in this work is twofold.
First, we construct an efficient CB-PWS protocol with

constant-round complexity, but with the same computation
and communication costs as a standard protocol. When
designing an interactive protocol, researchers will always
investigate the round complexity of their method, because
interaction over a network is usually affected by lagging
or network congestion, becoming the most time-consuming
aspect of the operation. We have many good examples
of this type of secure protocol (e.g., [12]–[15]). Unfortu-
nately, although CB-PWS solutions are typical examples
of interaction-intensive protocols, round complexity has
not been taken into account as a key efficiency metric to
accompany computation and communication complexity.
Therefore, it is very important to devise protocols that
require a minimal number of rounds to complete. Our
challenging goal is to find a CB-PWS solution with O(1)-
round complexity for a number of users.
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Second, we provide our efficient CB-PWS protocol with
simulation-based security, focusing on the model of malicious
users. We have observed that existing CB-PWS systems have
not undergone rigorous proof of security, although ad-hoc
security analysis has been performed in some cases. The
only exception is Lindell and Waisbard’s scheme [9], but
this has involved only game-based security. We believe that
it important to define precisely, and prove formally, the
security that a cryptographic protocol offers, because the
history of cryptographic-scheme design gives good reasons
to distrust heuristic approaches.

Having stated the technical goals of this work and before
giving a conceptual description of our PWS solution, we
now summarize our contributions and present a high-level
overview of our construction. For readers who would first
like to review existing work in the PWS field to better
understand where our work fits in, Section 6 surveys the
PWS state of the art. However, in explaining our work, we
will sometimes also give a brief survey of what is known in
the literature about the relevant PWS issues.

1.1 Our Contributions

The technical contributions of this paper can be summarized
as:

• We design a constant-round CB-PWS solution with
comparable computation and communication com-
plexity to existing systems, assuming the existence
of a broadcast channel. Without the broadcast, our
protocol expects to involve constant rounds for a
number of users while preserving the computation
and communication cost.
Kang et al. [16] argued that their CB-PWS protocol
has a constant number of rounds to complete. How-
ever, their work does not consider a network where
only point-to-point communication is allowed. Fur-
thermore, their scheme does not provide a specific
protocol to set up a group of users, which should
be a mandatory part of any CB-PWS protocol. In
fact, no CB-PWS solutions other than that of Lindell
and Waisbard have handled this issue. These CB-
PWS schemes do not provide a way to determine
a group leader among n users, but it is well known
that group-leader election is a nontrivial issue, partic-
ularly with the constant-round restriction. Therefore,
it is not clear if Kang et al.’s scheme will complete the
protocol activities in a constant number of rounds.
Kim and Kim [11] proposed a round-efficient
CB-PWS scheme, but it significantly restricts the
message-space size (at most 5 bits for a group of
20 users). Therefore, it does not lead to a preferable
solution to the problem.

• We provide a so-called formal proof of security,
which uses a simulation-based technique. It is
clearly preferable to prove security using a standard
simulation-based technique with a universally com-
posable model. Differently from [9], we define an
ideal functionality to fit the PWS model and show
that our protocol can be transformed efficiently into
the ideal functionality.

• We provide a specific protocol for efficiently creat-
ing a group of n users. In addition, we solve the
inefficiency problem in Kang et al.’s work. Even if
Kang et al. resolved the incompleteness issues above,
their scheme is far from efficient in the sense of
computation complexity. This is because the group
manager has O(n3 log2 n) computation complexity
in the number of users n. Therefore, their scheme can
run efficiently only for a very small number of users.
(3 ∼ 4). We develop a solution to these technically
crucial problems without restricting the plaintext
length, which indeed is the primary difference from
Kang et al.’s results.

1.2 A Key Idea behind Our Scheme
We now describe the properties of our scheme, compared
to existing CB-PWS solutions, from a design-philosophy
viewpoint.

Techniques common to our protocol and existing pro-
tocols are, first, to encrypt users’ query terms via a proper
encryption algorithm, and then to rerandomize and mix the
ciphertexts to remove linkability between users and their
query terms. Figure 1 shows these general protocol actions,
together with the number of rounds required to complete
subprotocols such as a shuffle protocol.

Protocol flow Main # of
operations Rounds

u1 · · · un
↓ ↓

q̄1 = E(q1) · · · q̄n = E(qn)
Encrypt 1

⇓
Shuffle Remask &

n
(π, r1, · · · , rn) Mix

⇓
{q̂1, . . . , q̂n}

⇓
Group decryption Decrypt 1

⇓
{q1, . . . , qn}

⇓
Web query 1

⇓

{a1, . . . , an}
Broadcast 1query result

Fig. 1. General CB-PWS design framework

Existing works and their basic framework. We are mainly
interested in Shuffle phase because this step requires O(n)
rounds for a number of users n. In existing solutions, each
user ui first computes an encryption of its own query term
qi, denoted by q̄i, under an encryption algorithm E. Then
all users join and run a shuffle protocol, taking as inputs a
private permutation π over the set {1, 2, . . . , n} and a set
of fresh randomizers (r1, r2, . . . , rn). This shuffle protocol
should be performed in a relay manner among all users be-
cause the sequential shuffles they employ can only achieve
unlinkability in this manner. Therefore, a round complexity
of O(n) seems to be unavoidable.
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Our idea. We utilize a similar design framework. However,
our scheme does not require the users to engage in a
sequential shuffle protocol. However, note that this does not
mean that our scheme does not use the shuffle protocol at
all. Similarly, our scheme also outputs a list of rerandomized
and mixed ciphertexts during its execution, but without any
interaction with other users, i.e., in a stand-alone mode. To
achieve this, instead of using a query term qi, we encrypt
a share of qi after letting its other shares be distributed to
other users. This is the main difference between our protocol
and other existing solutions. More specifically, consider
a situation before invoking the shuffle protocol in both
cases. In existing solutions, all users have the same list of
ciphertexts {q̄1, q̄2, . . . , q̄n} in clear. In contrast, users in our
solution have a different list of ciphertexts at this point,
i.e., {q̄i,1, q̄i,2, . . . , q̄i,n} by denoting the j-th share of qi as
qi,j(1 ≤ j ≤ n). Following this basic technical property, our
protocol does not require any interaction between neighbors
and does not incur a number of rounds proportional to the
number of users.

However, we do face a new problem. Because all users’
query terms have been distributed in the form of shares
and then encrypted, after performing group decryption, all
shares should be presented to an algorithm that can recon-
struct a mixed list of original query terms {qπ(1), . . . , qπ(n)}.
Because we cannot match the decrypted shares to their
original messages, a naı̈ve method involving trial and error
runs the reconstruction algorithm O(n2) times. This incurs
O(n3 log2 n) computational complexity in total, assuming
that fast interpolation can be done by O(n log2 n) multipli-
cations. In this work, we develop a lightweight solution to
resolve this computational problem at the cost of some slight
damage in the plaintext domain.

The outline. The structure of this paper is as follows. Sec-
tion 2 introduces basic definitions and cryptographic prim-
itives: secret sharing and public-key homomorphic encryp-
tion. The system model for running our scheme is described
in Section 3. Section 4 provides a detailed description of
our construction, together with a full description of the
performance and security analysis of our protocol. Section
5 deals with a key subprotocol by which a group can be
constructed and a group manager can be elected. Section 6
contains a review of the relevant literature and we make
some concluding remarks in Section 7.

2 DEFINITIONS AND BASICS

In this section, we review briefly the concepts and notations
in cryptographic building blocks. We then give a definition
of security for CB-PWS which will be used in proving
formally that our proposal is secure in the presence of
malicious adversaries.

Mathematical notation. If A is a probabilistic polynomial-
time (PPT) machine, we use a ← A to denote making A
produce an output according to its internal randomness.
In particular, if U is a set, then r

$←− U is used to denote
sampling from the uniform distribution on U . Letting U t[x]
be the set of all polynomials of degree 0, . . . , t with coeffi-
cients from U , we denote by f $←− U t[x] a polynomial chosen
independently and uniformly from U t[x].

A negligible function, denoted by negl(λ), is a ν(λ) such
that ν(λ) = o(λ−κ) for every fixed constant κ. For n ∈ N,
[n] denotes the set {1, . . . , n}. For any integer x the length
of the binary representation of x is denoted by |x|, but when
the context is clear we also use |X| to denote the cardinality
of a set X .

Let X = {Xλ}λ∈N and Y = {Yλ}λ∈N be ensembles. Two
ensembles X and Y are computationally indistinguishable,
denoted by X

c
= Y , if for every PPT algorithm D and all

λ ∈ N,∣∣∣P[D(Xλ, 1
λ) = 1]− P[D(Yλ, 1

λ) = 1]
∣∣∣ < negl(λ)

2.1 Threshold Secret Sharing

We assume that the readers are familiar with the notion of
secret sharing and Shamir’s implementation.

A secret sharing scheme (e.g., [17], [18]) consists typically
of an algorithm for sharing a secret and an algorithm for re-
constructing the shared secret. We denote the first as Sh and
the second as Rc. Shamir’s scheme is based on polynomial
interpolation and involves n points on the Cartesian plane.
Using these n points, a unique polynomial f(x) over a finite
field is guaranteed to exist such that f(x) = y for each of
the points given. For a concrete instantiation of Shamir’s
scheme, we need first to determine an appropriate field F
for the subsequent modular arithmetic. For instance, we can
take F as Zq̃ for a prime q̃. Given f $←− Zq̃n−1[x] and a secret
q ∈ Zq̃ , we use f whose constant term has been replaced by
the q, in running algorithms Sh and Rc subsequently.

However, Shamir’s secret sharing is insufficient for set-
tings involving active corruption, where an adversary may
corrupt users in an arbitrary way. In particular, ordinary
secret sharing is not effective in settings that may require a
secret to be secured for a long period of time. Indeed, stan-
dard secret sharing schemes are no longer secure after some
number t of users have been corrupted. To avoid advanced
threats which, given sufficient time, will successfully cor-
rupt sufficient users to break the threshold that guarantees
security, a proactive security model can be considered, such
as Ostrovsky and Yung [19]. Alternatively, verifiable secret
sharing (VSS) could be considered, to prevent a malicious
dealer from distributing spurious shares.

Fortunately, there are three considerations that free us
from imposing a heavy computation burden on the users
to make up for the security weakness of ordinary secret
sharing in a stronger security model:

1) Because it is not necessary to preserve the confiden-
tiality of users’ query terms for a long period, we do
not need to consider proactive security.

2) Users distribute encryptions of shares of their own
query words rather than the shares themselves. The
more important thing is that the shares should be
encoded into a specific form before being given to
an encryption algorithm. Whether the decryption of
encrypted share is well-formed can be checked later.
If the decryption is not a well-formed share, then the
decryption is simply discarded.

3) Our technique for encoding secret shares involves
both additions and multiplications, but, because our
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underlying encryption has only a group homomor-
phism, we cannot plug our encoding scheme into an
existing VSS scheme.

2.2 Threshold Homomorphic Encryption
A public-key encryption scheme E = (Kg,E,D) comprises
the following algorithms:

• Kg is a randomized algorithm that takes a security
parameter λ as input and outputs a secret key sk and
a public key pk. pk defines a plaintext spaceMpk and
a ciphertext space Cpk.

• E is a randomized algorithm that takes pk and a
plaintext m ∈ Mpk as input and outputs a ci-
phertext c ∈ Cpk. Note that this process is usually
randomized using a randomizer r ∈ Rpk, denoted
by c = Epk(m; r).

• D takes sk and c ∈ Cpk as input and outputs the
plaintext m.

We say that an encryption scheme is correct if, for any
(pk, sk)←− Kg(1λ) and any m ∈Mpk, m = Dsk(Epk(m)).

We say that a public-key cryptosystem E is homomorphic
for the binary relations (⊕,⊗) if for all (pk, sk) ← Kg(1λ),
given Mpk and Cpk, (Mpk,⊕) forms a group and (Cpk,⊗)
forms a group. Further, for all c1, c2 ∈ Cpk, Dsk(c1 ⊗ c2) =
Dsk(c1)⊕ Dsk(c2).

Informally, when two ciphertexts are combined in a
specific manner, the resulting ciphertext encodes the com-
bination of the underlying plaintexts under a specific group
operation, usually multiplication or addition. As a conse-
quence, a cryptosystem’s homomorphic property allows us
to perform rerandomization: given a ciphertext c, anyone
can create a different ciphertext c̄ that encodes the same
plaintext as c. Therefore, given a group homomorphic cryp-
tosystem E , we can define the rerandomization algorithm as
follows:

Repk(c; γ) := c⊗ Epk(0; γ),

where 0 is an identity such that ∀m ∈Mpk,m⊕ 0 = m.

Security for homomorphic encryption. Because group ho-
momorphic encryption (GHE) allows malleability in ci-
phertexts, we need only discuss security for homomorphic
cryptosystems, the so-called semantic security.

Semantic security was first defined by Goldwasser and
Micali [20]. Intuitively, a cryptosystem is said to be se-
mantically secure if, given a ciphertext c, an adversary
cannot determine any property of the underlying plaintext
m. Specifically, an adversary cannot extract any semantic
information about plaintext m from an encryption of m.

We say that a GHE scheme E = (Kg,E,D) is semantically
secure if, for all polynomial-time algorithms A = (A1,A2),

P
b,r


(pk, sk)← Kg(1λ);
(m0,m1, s)← A1(pk);
cb ← Epk(mb; r);
b′ ← A2(m0,m1, cb, s)

∣∣∣∣∣∣∣∣ b = b′

− 1

2
≤ negl(λ),

where b, b′ ∈ {0, 1} and s is the state information of A.

Threshold GHE. We require a threshold group-
homomorphic encryption scheme. This property is
satisfied by most known homomorphic encryption

schemes, including Goldwasser-Micali [20], El Gamal [21],
Paillier [22] and threshold Paillier [23]. As mentioned
above, our scheme does not require a particular type of
GHE scheme. However, because El Gamal’s scheme is
somewhat more efficient than Paillier’s scheme in the
computational sense, we review briefly the El Gamal
encryption scheme and its threshold variant.

For large primes p and q such that q|(p−1), let Gq be the
unique subgroup of Z×p of order q, and let g be a generator
of Gq . Because any element 1 6= β ∈ Gq generates the group,
the discrete logarithm of α ∈ Gq with respect to the base β
is defined as usual. All computations in the remainder of
this paper are modulo p unless otherwise noted.

The standard El Gamal encryption scheme is as follows:

• Kg(1λ) outputs a group description (Gq, g, p, q) by
taking the security parameter λ, then publicly open-
ing y = gx and keeping x secret, where x $←− Z×q .

• Epk(m; r) outputs c = (gr,m · yr) with r $←− Z×q .
• Dsk(c) first parses c into (α, β) and outputs β · α−x.

We can easily verify that the El Gamal encryption scheme
is multiplicatively homomorphic. Its rerandomization algo-
rithm Repk(c; γ) := c⊗ Epk(1G; γ) is given by

c⊗ Epk(1G; γ) = (α · gγ , β · 1G · yγ) = (gr+γ ,m · yr+γ),

where the ⊗ operation means componentwise group multi-
plication and 1G is the identity element in Gq .

Distributed key generation. Each participant chooses xi
$←− Z×q

and publishes yi = gxi . The public key is y =
∏N
i=1 yi, and

the secret key is x =
∑N
i=1 xi. This requires N multiplica-

tions, but their computational cost is negligible compared
to exponentiations. Further broadcast round complexity is
O(1). We write this algorithm as TKg(1λ, N).

Distributed decryption. Given an encryption c = (α, β),
each participant publishes their decryption share αxi . The
plaintext can be derived by computing β∏N

i=1 α
xi

. As in
key generation, decryption can be performed in a constant
number of rounds, requiring one exponentiation. We write
this algorithm as TDxi

(c).

2.3 Message Space Compatibility

As described briefly in §1.2, our protocol requires that each
share of a query be encrypted by a threshold GHE scheme.
Accordingly, all shares from the Sh algorithm of a secret
sharing scheme need to be in the plaintext domain of the
encryption scheme.

Let F be an underlying field for Shamir’s sharing scheme
and let M be the plaintext domain of the GHE scheme.
To resolve this message compatibility issue, F needs to be
embedded into M. Specifically, our protocol requires that
|M| ≥ |F |+ 2dlog ne, for the number of users n. In particu-
lar, letting F = Zq̃ andM = Gq for two primes q̃ and q, we
will take q̃ and q such that dlog qe = dlog q̃e + 2dlog ne. We
will discuss a technical reason for these parameter selections
in Section 4.



5

2.4 Security Definition

We now present a security definition for our CB-PWS
scheme. In principle, we follow the standard definition for
secure multiparty computation [24, §7].

Simulation-based security. We define the ideal execution of
a function Q on inputs (q1, . . . , qn) and security parameter
λ as the outputs of the honest users and the adversary
A from the above ideal execution. More specifically, let
Q : ({0, 1}∗)n → ({0, 1}∗)n be an n-ary functionality and
let Qi(q1, . . . , qn) be the i-th element of Q(q1, . . . , qn). For
an index set J = {i1, . . . , it} ⊂ [n] such that t < n,
let I = [n]\J and denote by QJ(q1, . . . , qn) the sequence
Qi1(q1, . . . , qn), . . . , Qit(q1, . . . , qn). A pair (J,S) where S
is a PPT algorithm, represents an ideal-model adversary. The
ideal execution of Q under (J,S) on input q = (q1, . . . , qn),
denoted by IDEALQ,S(·),J(q, λ), is defined as the output
pair of the honest users and the ideal-model adversary S
from the ideal execution. The output of the honest users
is QI(q′) and the input of S is (qj∈J , J,QJ(q′)), where
q′ := (q′1, . . . , q

′
n) such that q′i is given by S for i ∈ J and

q′i = qi otherwise.
Let Π be an n-party protocol for computing Q, defined

as above. In the real model, there is no trusted party and the
users communicate directly with each other. The real-model
adversary A controls the corrupted users and therefore
sends all messages of its choice in their place. Further, the
adversary is not obliged to follow the specifications pre-
scribed in the protocol Π. The real execution of Π on inputs
q and security parameter λ, denoted by REALΠ,A(·),J(q, λ),
is then defined as the output vector of the honest users and
the real adversary A from the real execution of Π.

Following the ideal-vs-real standard simulation tech-
nique, we also require that a secure protocol emulates the
ideal execution in the real model where a trusted party
does not exist. We consider only a static adversary, which
is not allowed to corrupt a user during protocol execution.
Implicitly, we assume that the adversary takes as input some
auxiliary information.

We can now describe the security situation more for-
mally.

Definition 1 (Security in the malicious model). Let Q and
Π be defined as above. Protocol Π is said to securely
compute Q if, for every PPT algorithm A, there exists a
PPT algorithm S , such that for every J ⊂ [n],

{IDEALQ,S,J(q, λ)}q,λ
c
= {REALΠ,A,J(q, λ)}q,λ

Hybrid execution. In our construction, we will use zero-
knowledge proof (ZKP) protocols as subroutines. A stan-
dard technique for plugging a secure subprotocol ΠG com-
puting a functionality G into a protocol Π is to adopt a
hybrid model. In this model, any execution of the protocol
Π calling ΠG as a subprotocol requires that users interact
with each other as in the real model, but access the ideal
functionality of G as in the ideal model. Specifically, when
user ui needs to send a message qi to the trusted party,
it begins to execute ΠG on input qi instead. On the other
hand, when the execution of ΠG ends with output ai, user
ui continues with Π as if ai were given by the trusted party.
Then, by the composition theorem of [25], if ΠG securely

computes G, then the output distribution of a protocol Π
in a hybrid execution with G is computationally indistin-
guishable from the output distribution of Π invoking ΠG .
Therefore, we need only analyze the security of Π when
working with G in a hybrid model.
The ideal functionality of PWS. We now describe an
ideal functionality of PWS, where each user’s input is a
search keyword qi. Given a query qi, when its query result
corresponds to ai, the functionality outputs the union of all
ai results to all users. If no results are found, ui is given a
null string ⊥. More formally:
Definition 2. Let qi be a query word of user ui and ai be

a corresponding query result (without loss of generality,
we assume that all query words have the same size).
Then the ideal functionality FPWS is:

(q1, . . . , qn) 7→ ({a1, . . . , an}, . . . , {a1, . . . , an})

In the following sections, we present details of our PWS
construction for a protocol realizing FPWS in the presence of
malicious adversaries.

3 SYSTEM MODEL

Participants. We work in a setting which involves three
semi-honest entities: (1) the users, (2) the group manager,
and (3) the Web search engine. More specifically, The users
are the individuals who submit query terms to the search
engine and who wish to prevent the search engine from
building user profiles. We use u to denote a user. The role
of the group manager, denoted by G, is to group users for
execution of the protocol introduced above. The Web search
engine provider, denoted by W , is the entity that provides a
list of best-matching Web pages, usually accompanied by a
short summary and/or parts of the document. Note that a
search engine has no incentive to protect the users’ privacy.
Communication channels. For our communication model,
we assume that there is a broadcast channel whereby users
send messages to all other users in a single round. However,
sometimes the network may not have a broadcast channel,
and we will need to emulate a broadcast channel using
point-to-point communication.
Restrictions on adversary. As in the security model, we
consider that an adversary is not allowed to break current
encryption schemes that are computationally secure. Fur-
ther, we assume that, for correctness, there is at least one
honest user in a group. In contrast to [8], we allow collusion
between two different participants in the protocol. However,
our solution does not consider several desirable properties
for efficiency reasons, namely abrupt termination, fairness,
and guaranteed output delivery. The first of these properties
has been relatively better studied than the remainder. For ex-
ample, Garg et al. [26] constructed a two-round protocol for
general computation. However, for protocols that consider
fairness and guaranteed output delivery, our understanding
of round complexity is still incomplete.

4 OUR SHUFFLE PROTOCOL FOR WEB QUERIES

In this section, we describe the concrete construction of
our CP-PWS system. We begin by describing the model of
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execution for our PWS construction and its participants, ex-
plaining the concepts of queries, shuffle, and cryptographic
keys. We then give the description of our scheme. Finally,
we discuss security and efficiency issues.

4.1 Our Basic CB-PWS Protocol

As mentioned above, the key idea behind CB-PWS solutions
is for a group to submit a set of search words on behalf
of individual users. Following this design philosophy, we
describe how our protocol hides the link between users and
their query terms. We begin by giving a high-level overview
of our protocol.

Overview. Our PWS scheme, denoted by ΠPWS, is divided
logically into three phases:

1) Setup. The main goal of the Setup phase is to create a
group of users who would like to make searches via
the search engine. In addition, all system parameters
for Shamir’s secret sharing scheme and a public-key
encryption scheme will be published to all users in
the group.

2) Mixing query. Upon completing this phase, all users
will hold a reencrypted and permuted version of the
distributed query terms.

3) Submitting query. The group manager receives a set
of queries, without knowing who submitted which
query. It then submits the queries to the search
engine. Upon receiving a set of query results from
the search engine, it broadcasts the result.

We provide an abstract description of our proposal in
Figure 2, which summarizes all interactions between the
entities (e.g., users and the group manager). From this, we
can estimate approximately the complexity results.

4.1.1 Setup
Let n be the size of the group and let N be the number of
group managers. For convenience, we simply assume that
the group managers know n and that all users know where
the group managers are and how to contact them. Further,
all messages are assumed to be encoded automatically into
the working group of a given encryption scheme.

Let E = (TKg,E,TD,Re) be a semantically secure
threshold GHE scheme, and let K be a public parameter
specifying Shamir’s secret sharing scheme. The setup phase
then comprises three main activities:

(1) The N group managers G1, . . . , GN collaboratively
run the key generation TKg(1λ, N ) and publish the
system parameters, including the public key pk = y,
and with the parameter K , within the restrictions
specified in §2.3.

(2) The N group managers elect a group-manager
leader, denoted by G ∈ {G1, . . . , GN}, and pub-
licize G to users as a representative of the group
managers.

(3) When the leading group manager G receives n
requests for a private query, it responds to all n
users indicating the group size of n. The group
manager then constructs a group {u1, u2, . . . , un}
and publishes the group information, including the

group name, a list of participating users, and each
user’s label.

We defer the details of techniques for choosing the
leader of the group managers and for group construction
to Section 5. Note that these subprotocols require only a
constant number of rounds.

4.1.2 Mixing Query
Let Mpk be the plaintext domain of E and let FK be the
working domain for Shamir’s sharing scheme such that
FK ⊂ Mpk. Let qi ∈ FK be a query term from ui.
After receiving both the group information and the system
parameters from G as a response to its query request, each
user ui∈[n] performs six steps:

(1) Chooses a set of random coefficients {ri,k}n−1
k=1 such

that ri,k ∈ FK and |ri,k| = dlog q̃e, and determines

Ri(x) =
n−1∑
k=1

ri,kx
k + qi ∈ FKn−1[x]

(2) Computes the shares of the query term qi by evalu-
atingRi at each point j ∈ [n] and sets vi,j = Ri(j) ∈
FK for each i, j ∈ [n].

(3) Generates a random integer αi such that |αi| =
2dlog ne and, for all j ∈ [n], defines the shares by
appending it to each of them as vi,j = vi,j ‖ αi. We
then have |vi,j | = dlog q̃e+ 2dlog ne ≤ dlog qe.

(4) Computes v̄i,j = Epk(vi,j) for each j ∈ [n], and
broadcasts a list 〈i, j, v̄i,j〉j∈[n]\{i} to all other users.

(5) Because ui can build the array of 4-tuples:
⊥ · · · 〈1, i, v̄1,i〉 · · · 〈1, n, v̄1,n〉

〈2, 1, v̄2,1〉 · · · 〈2, i, v̄2,i〉 · · · 〈2, n, v̄2,n〉
...

〈n, 1, v̄n,1〉 · · · 〈n, i, v̄n,i〉 · · · ⊥
′


where ⊥ indicates that a 4-tuple with an encrypted
share is unknown to the corresponding cell, it sets
v̄i = (v̄1,i, v̄2,i, . . . , v̄n,i) and then computes a reran-
domized and shuffled version of v̄i:

v̂i = (v̂1,i, v̂2,i, . . . , v̂n,i),

where, for each ` ∈ [n], v̂`,i = Repk
(
v̄πi(`),i; γ`

)
with

πi is a random permutation on [n] and γi,` ∈ Z×q .

(6) Sends the new list v̂i to the group manager G.

4.1.3 Submitting Query
The group manager performs the following four steps:

(1) Constructs an n × n matrix M by decrypting all of
the received ciphertext vectors:

M =


vπ1(1),1 vπ1(2),1 · · · vπ1(n),1

vπ2(1),2 vπ2(2),2 · · · vπ2(n),2

...
...

...
...

vπn(1),n vπn(2),n · · · vπn(n),n
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protocol Private Web Search

– Inputs: a list of query terms (q1, q2, . . . , qn) from each user
– Auxiliary inputs: a security parameter and a group size n
– The protocol actions:

1) Setup. This step consists of two major tasks as follows:

• Group setup: A group of n users is created, and a group information is published.
• Parameter selection: N group managers jointly generate parameters for threshold crypto-

graphic primitives and publicize the parameters to the users.

2) Mixing query. In this step, the users perform the following:

a) Splitting the query term qi into n shares using Shamir’s secret sharing scheme.
b) Encrypting the shares into a list of ciphertexts under the public key of group.
c) Broadcasting the list of ciphertexts.
d) Re-encrypting and mixing the received list of ciphertexts.
e) Sending the updated list of ciphertexts to the group managers.

3) Submitting query. In this step, the group managers jointly recover all query terms by applying
the Lagrange interpolation to the decrypted lists, and submit the recovered terms to the search
engine on behalf of the group users.

Fig. 2. An algorithmic description of our protocol ΠPWS

(2) Parses each vπi(j),i into a share of a query term and
a random padding, and collects only the n shares as

vi = {vi,1, vi,2, . . . , vi,n} ,

where the random padding is the same for all
shares.

(3) Reconstructs the polynomial Ri(x) of degree n − 1
using the Lagrange interpolant and n points in vi,
for all i ∈ [n], and recovers a list of query terms Q =
{q1, q2, . . . , qn} from the fact that qi is the constant
term of Ri(x) for each i ∈ [n].

(4) Submits the set Q to the search engine W and then
broadcasts to the users a result set {a1, . . . , an}
received from W .

In the following subsection, we analyze the performance
of our construction in terms of its efficiency. Next, we
analyze the security of our protocol by examining its various
behaviors.

4.2 Performance

Our protocol ΠPWS is compared to other CB-PWS solutions
in terms of three efficiency measures: computation, commu-
nication, and rounds. For this purpose, we first analyze the
performance of our proposal. Then, the schemes proposed
by Castellà-Roca et al. [8] and Lindell and Waisbard [9] are
compared to our proposal. Because the scheme by Romero-
Tris et al. [10] is identical to Castellà-Roca et al.’s scheme
except for adding ZKPs and replacing the shuffling by a
permutation network, we omit Romero-Tris et al.’s scheme
from the comparison. Furthermore, we are unable to pro-
vide a fair comparison between the scheme proposed by
Kim and Kim [11] and our scheme because their scheme
restricts the query term size to log q

n , i.e., |q| ≤ log q
n .

4.2.1 Computation & Communication Complexity

We first analyze the computation and communication costs
for running the protocol ΠPWS. For a fair comparison, we
assume that our construction also employs an El Gamal
encryption scheme whose working group is Gq of order q,
which is the subgroup of Z×p for primes q, p. For example,
p may be 1024 bits long while q is 512 bits long. We denote
by exp(`) a modular exponentiation of an `-bit integer and
by mul(`) a modular multiplication of two `-bit integers.
We note that, because Lindell and Waisbard’s scheme uses a
two-layer encryption where Cramer and Shoup’s cryptosys-
tem [27] takes as input an El Gamal ciphertext, most of their
modular exponentiations should be carried out modulo a
2048-bit integer rather than a 1024-bit integer.

Computations. Table 1 presents a comparison of compu-
tations for our scheme and our competitors. For a fair
comparison, we did not count the number of cryptographic
operations against a malicious adversary, e.g., ZKPs.

TABLE 1
Comparisons of computation costs

Modular Exponentiations Modular Multiplications
Ours 4nexp(dlog qe)

(
3n+O(n log2 n)

)
mul(dlog qe)

[9]
(n+ 2)exp(dlog qe)+ (n+ 1)mul(dlog qe)+

11nexp(2dlog qe) 6nmul(2dlog qe)
[8] (3n+ 2)exp(dlog qe) (3n+ 1)mul(dlog qe)

The ‘Mixing Query’ step in our scheme requires eval-
uation of a polynomial at many points. It is well known
that a fast evaluation of a polynomial in FK [x], of degree
less than n and for n points in FK , can be performed
using at most O(n log2 n) operations in FK . As a result,
the computation complexity of our protocol is in total O(n)
modular exponentiations in addition to O(n log2 n) modu-
lar multiplications.



8

Communications. In our scheme, each user first needs to
send (n − 1) El Gamal ciphertexts and then n El Gamal
ciphertexts, where each El Gamal ciphertext comprises two
dlog pe-bit integers. Because of the n-layered encryption in
the Lindell and Waisbard scheme, the ciphertext size may
grow exponentially. To avoid this problem, the authors
apply a hybrid encryption technique by introducing a secure
block cipher that can process a κ-bit block in one operation.
In their scheme, the i-th user outputs an i-layered Cramer-
Shoup ciphertext whose size is (i · 4 · 2dlog pe + κ) bits.
For n users, the transmission size becomes n(n+1)

2 · 4 ·
2dlog pe + nκ = 4n(n + 1)dlog pe + nκ bits. Because each
user holds n of these ciphertexts, the transmission requires
4n2(n+ 1)dlog pe+n2κ bits in total. Furthermore, each user
sends ndlog pe bits for decryption to other users.

TABLE 2
Comparisons of communication costs

Transmissions (in bits)
Ours 2n(2n− 1)dlog pe

[9] 4n2(n+ 1)dlog pe+ n2κ+ n2dlog pe
[8] 3n2dlog pe

In consequence, our scheme has O(n2dlog pe) communi-
cation complexity, whereas Lindell and Waisbard’s scheme
has O(n3dlog pe) complexity.

4.2.2 Round Complexity
We have yet to show that the total number of rounds for
running our PWS solution is constant because we do not
know the round number required to build a group of n
users.

However, if building a group of users can be performed
with a constant number of rounds, it is clear that our
protocol will have a constant round complexity. The main
part of our protocol comprises four rounds: (1) applying
Shamir’s secret sharing and encryption to a query term, and
broadcasting the resulting list, (2) shuffling the resulting set
and sending it to the group manager, (3) recovering a set of
query terms and submitting them to a search engine, and
(4) broadcasting the search results to the users. In contrast,
other CB-PWS proposals have O(n)-round complexity.

4.3 Security

We continue by arguing that our protocol ΠPWS is secure in
terms of the semi-honest model.

Assume that there exists at least one honest group man-
ager in {G1, . . . , GN}. Because all private inputs are en-
crypted by semantically secure encryption Epk(·), no users
can learn nontrivial information about other users’ private
query values during the protocol ΠPWS with any significant
probability. Because a random permutation of an honest
user is secret to the adversary and, in this security model,
the adversary should follow the instructions of the protocol,
the protocol leaks no nontrivial information, even for the
case of a conspiracy between a group manager and a set of
t corrupted users, where t < n.

If all group managers are corrupt, then the adversary
could identify which query term has been submitted by

which user. This is because each share of a query term
carries a random padding, and therefore decrypting an El
Gamal ciphertext originating from a specific user would
compromise the unlinkability of our protocol.

4.4 Upgrading to Malicious Security

A standard technique for ensuring the security of a crypto-
graphic protocol is to show the achievability of simulation-
based security of the protocol. To achieve our security goal
against malicious entities, we will need to utilize crypto-
graphic tools as subprotocols. The first tool is a ZKP of
knowledge about a discrete logarithm (DL). There have been
many efforts to construct a ZKP for the language of the
nonzero exponent of g:

Lzk-DL = {(pk, h)|∃x s.t. h = gx}

We use a ZKP protocol designed for a signature scheme by
Schnorr [28], denoted by zk-DLpk{(x)|gx}.

The second tool is a ZKP that, given a public ciphertext,
a user knows the corresponding plaintext. We use standard
techniques to design a ZKP protocol for the language:

Lzk-PK = {(pk, v̄)|∃ v ∈ Gq s.t. v̄ = Epk(v)} ,

and we denote by zk-PKpk{(v)|v̄ = Epk(v)} a ZKP from this
subroutine. ZKP techniques for proving plaintext knowl-
edge have been well studied elsewhere [29].

The final tool is a verifiable shuffle that enables proof of
the correctness of a shuffle, where a shuffle of ciphertexts
v̄ = (v̄1, . . . , v̄n) is a new set of ciphertexts v̂ = (v̂1, . . . , v̂n)
with the same plaintexts in permuted order. We also use a
ZKP protocol for the language of the shuffle of 2n El Gamal
encryptions:

Lzk-CS = {(pk, v̄, v̂)|∃ (π,γ) s.t. ∀ i ∈ [n], v̂π(i) = Repk(v̄i; γi)},

where π is a random permutation on [n] and a random
vector γ = (γ1, . . . , γn)

$←− (Z×q )n. zk-CSpk{(π,γ)|v̂π(i) =
Repk(v̄i; γi)∧ v̄i ∈ v̄ ∧ v̂π(i) ∈ v̂} is shorthand notation for a
ZKP that a user knows a witness (π,γ) to the correctness of
a shuffle. There is a considerable literature on this topic. For
example, VS protocols by Groth [30] and Neff [31] are well
known. Note that all values not enclosed by () are assumed
to be known to the verifier.

4.4.1 Our CB-PWS Protocol for the Malicious case
Using the above subprotocols, we can strengthen the basic
protocol described in §4.1 so that the modified protocol is se-
cure against a malicious adversary. We denote this extended
version as Π?

PWS. The remainder of this section deals with
steps that should be modified for stronger security. To avoid
repeating the basic descriptions, we will describe just the
required modifications to the three phases:

Setup. We need to change only Step (1). Specifically, each
group manager Gi∈[N ] chooses a random private key xi

$←−
Z×q and publishes its public-key share yi = gxi along
with a ZKP of knowledge of yi’s discrete logarithm using
zk-DLpk{(xi)|gxi}.
Mixing Query. We make no changes in Steps (1) to (3) of
this phase.
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In Step (4), each user ui computes v̄i,j with proof of
plaintext knowledge:

zk-PKpk{(vi,j)|v̄i,j = Epk(vi,j)},

for each j ∈ [n] and sends it to all other users.
In Step (5), on receiving an encrypted share, each user

verifies proofs of plaintext knowledge. If this check fails,
the protocol is terminated. If all verifications of proofs
from other users are valid, for a ciphertext vector v̄i =
(v̄1,i, . . . , v̄n,i), each user computes a rerandomized and
shuffled version of this vector, v̂i = (v̂1,i, . . . , v̂n,i) together
with proofs of correct shuffle, for each ` ∈ [n]:

zk-CSpk{(πi,γi)|v̂πi(`),i = Repk(v̄`,i; γi,`)},

using a vector of randomizers γi = (γi,1, . . . , γi,n) and a
random permutation πi of its own choice, where v̄`,i is a
component of v̄i and v̂πi(`),i is a component of v̂i. The user
then sends it to the group manager G in Step (6).
Submitting Query. On receiving a vector of ciphertexts v̂i
from a user ui, the group manager verifies the proofs of
correct shuffle. If this verification fails, it terminates the
protocol. Only after verification from all users, it constructs
the matrix M in Step (1).

In Step (2), the group manager receives a vector of n
shares vi = (vi,1, . . . , vi,n) such that all vi,j ’s have the
same random padding αi, without knowing which user
submitted the vector vi.

The remaining two steps are unchanged.

4.4.2 Security Proof for the Malicious Case
Before considering the proof of security, we observe that if
all users and a group manager are honest, ui outputs a set
of query results {a1, . . . , an} with a probability greater than
1
n4 . In this case, if a random padding αi ∈ {0, 1}n

2

is unique
in an execution of our protocol, then, because of the La-
grange interpolation, a unique polynomial is reconstructed
from the shares with the same αi and a query term qi is
correctly recovered. However, for the case of αi = αj 6=i, the
group manager drops both query terms qi, qj . Therefore,
the query term qi cannot be recovered with probability
P[αi = αj ] ≤ 1

n4 . For example, for a modest group size
of n = 30, the probability is 1

304 ≈ 2−20.
We now prove that our protocol Π?

PWS satisfies the
security definition given in Definition 1.
Theorem 1. Assume that at least one group manager

is honest, and that zk-DL, zk-PK, and zk-CS are the
ZKPs for Lzk-DL,Lzk-PK, and Lzk-CS, respectively, and
(TKg,E,TD,Re) is the threshold El Gamal encryption
scheme with semantic security. Then our protocol Π?

PWS
for any coalition J of colluding users such that |J | < n
securely computes FPWS in the presence of malicious
adversaries, assuming a broadcast channel.

Proof: We prove the security by constructing an al-
gorithm S , called a simulator, for an adversary in the ideal
model. The simulator works within the ideal model, but it
interacts with the corrupted users in J without A detecting
that it is not within the real model. The trusted party takes
the input from S and the honest users, and gives the query
result set S to the honest users. The simulator S then inter-
acts with the malicious users in J , pretending to be one or

more honest users, enabling them to know the query result
set. For the trivial case of J = ∅, we have demonstrated that
the output is correct. Our proof is in a hybrid model where a
trusted party runs the ZKPs of knowledge for Lzk-DL,Lzk-PK,
and Lzk-CS.

The simulator S proceeds as follows:

1) S performs the Setup phase as follows:

a) For each honest group managerG, S chooses
a uniformly random xG ∈ Z×q . S sends yG =
gxG toA and emulates the ideal functionality
of Lzk-DL by sending xG to A.

b) For each malicious group manager G̃, S re-
ceives from A, (yG̃, xG̃) for the ideal func-
tionality of Lzk-DL and records xG̃ only when
yG̃ = gxG̃ . Otherwise, it aborts, sending an
error message to the trusted party for FPWS.

2) Let I = [n]\J . For each simulated honest user ui∈I ,
the simulator S :

a) chooses a random polynomial Ri(x) such
that all coefficients are in FK and its constant
term is a query word qi of its choice.

b) chooses random paddings αi and constructs
encryptions of shares with them.

3) To perform the Mixing Query phase of the protocol,
the simulator S :

a) sends the encrypted shares to all malicious
users in J and simulates the ideal function-
ality of Lzk-PK by sending each share.

b) receives from A a list of encrypted shares for
each malicious user uξ∈J .

c) receives from A its input Vξ = (vξ,j)j∈[n]\{ξ}
for the ideal implementation Lzk-PK for each
malicious user uξ∈J . If A fails to prove its
correctness, then S sends an error message
to the trusted party FPWS and aborts.

d) emulates the ideal functionality of Lzk-CS as
follows: it constructs an n × n matrix Mi

for each honest user ui in I and sets its i-th
column vector to v̄i. For all i ∈ I , S chooses
a random vector γi = (γi,1, . . . , γi,n)

$←−
(Z×q )n and a random permutation πi over
[n] and computes a vector v̂i. S sends v̂i
to A and emulates the ideal functionality
of Lzk-CS by sending the vector γi and the
permutation πi.

e) receives from A a vector of mixed encryp-
tions v̂ξ for each malicious user uξ∈J .

f) receives from A its input (πξ,γξ) for the
ideal functionality of Lzk-CS for each mali-
cious user uξ . S communicates with A to
check whether its proof is valid or not; if not,
then S sends an error message to FPWS and
aborts.

4) To perform the Submitting Query phase, S emulates
a group manager G:

a) S sends each vector v̂i∈I for all honest users
and v̂ξ∈J from A to the group manager.
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b) For each ξ ∈ J , S extracts {vj,ξ}j∈[n] from
the encryption vector v̂ξ using (·,γξ) in Step
2-f.

c) Using Vξ in Step 2-c and (πξ, ·) in Step 2-f,
S constructs a vector vξ = (vξ,j)j∈[n] and
calculates qξ from the vector using Lagrange
interpolation.

d) S sends a set of query terms Q = {qξ}ξ∈J ∪
{qi}i∈I to the trusted party FPWS and re-
ceives as the answer a set {a1, . . . , an}.

5) S outputs whatever A does.

We can see that the simulator runs in polynomial time,
and the malicious users cannot identify that they are com-
municating with the simulator, which is working with the
ideal model, rather than with other users in the real model.
The correct answer is learned by all users for both real and
ideal models. Therefore, we may conclude the theorem.

Limitations. To maintain security against malicious adver-
saries, we require that all participants prove the correctness
of each protocol step. The above subprotocols can be proven
correct by using only so-called Σ-protocols, which need
just three rounds of interaction [32], [33]. Σ-protocols are
not known to be zero-knowledge, but they enable efficient
proofs of correctness for the protocol steps. Applying the
Fiat-Shamir heuristic [34] enables the obtained proof to be
zero-knowledge with a single message, but for the random
oracle model.

If a broadcast channel is not available, we need to modify
Theorem 1. First, the number of corrupted users t should be
strictly bound. Because we are working in an authenticated
setting, we are allowed to set t < n

2 . We can then emulate
the broadcast channel with expected constant rounds using
point-to-point interaction. [35] The round overhead of our
protocol in this setting will be dominated by this cost.

5 GROUP CONSTRUCTION

We have a variety of approaches to ensuring the establish-
ment of an anonymous channel between users and search
engines (e.g., the PIR technique [36] and Chaum’s mix-
net [37]). In principle, they can be applied to obtain a
secure PWS solution. The most convincing reason for their
applicability to PWS solutions is that they require users to
engage in a group, enabling the users to hide their identity
within the group. The larger the group, the greater is the
anonymity available to users. Despite the importance of
the group setup issue, many previous CB-PWS approaches
assume a particular group or do not offer a specific group-
setup protocol.

Unlike other approaches in the CB-PWS literature, we
pay attention to developing a set of specific protocol ac-
tivities for users to create a group of a fixed size and to
elect a group manager for the group. In the remainder
of this section, we present our group-setup protocol and
analyze its security for the random oracle model. To start,
we summarize the relevant abbreviations and notations in
Table 3.

TABLE 3
Notation and abbreviations

nu the total number of users in the system
n the group size
ng the number of groups, i.e., ng = bnu

n
c

t the number of corrupted users
{0, 1}∗ the set of all binary strings
{0, 1}α the set of all binary strings of length α
s1 ‖ s2 the concatenation of strings s1, s2 ∈ {0, 1}∗

J an index set of corrupted users in a group
I an index set of honest users in a group
Gj the jth group of size n in the system

H1 : {0, 1}∗ → {0, 1}M

H2 : {0, 1}M·(nu) → {0, 1}nu·log(nu)

H3 : {0, 1}log(nu)+nu|r| → {0, 1}log(ng)

 random oracles

M : a positive integer of polynomial size for λ

r: a random string in Gq

5.1 Group Setup

As for all other protocols in the literature, we assume the ex-
istence of an ideal public bulletin-board (PBB) functionality.
In fact, this assumption is equivalent to the assumption of a
broadcast channel. Informally the information is intention-
ally published and recorded permanently on the PBB (e.g.,
Web pages that serve as a PBB). Figure 3 shows our resulting
new protocol for constructing a group of n users.

protocol Group setup
GOAL: n users build a new group Gj in a 2-pass protocol
RESULT: a group Gj of honest majority, i.e., |J | < n/2
1. Protocol messages.

ui → PBB: 〈si, xi = H1(IPi, idi, ri)〉
ui ← PBB:

〈
j = H3(y(i), s1, . . . , snu

)
〉

2. Protocol actions. The following steps are performed
each time a user ui requests. Assume that nu users
have been registered in the system.
(a) ui computes xi = H1(IPi, idi, ri) where ri, si

are randomizers from Gq , IPi is the IP address,
and idi is its ID registered in the system.

(b) ui sends (si, xi) to PBB.
(c) PBB computes y = H2(x1, . . . , xnu

) and defines
y := y(1) ‖ · · · ‖ y(nu) where ∀i, |y(i)| = log nu.

(d) PBB computes j = H3(y(i), s1, . . . , snu) and
assigns to Gj the user ui.

(e) PBB sends the j to ui.

Fig. 3. Group setup protocol

Our protocol is a variant of Lindell and Waisbard’s
group-setup protocol in [9, §5.2]. For several technical rea-
sons, we need to develop a modified version rather than use
their original protocol.

The primary reason for our modification is that our PWS
protocol frequently uses a broadcast channel to control the
round complexity. Because our group-setup protocol should
be run before our main CB-PWS protocol, the group-setup
protocol might appear to be run in isolation. However, we
need to emulate the broadcast channel in a point-to-point
network using a broadcast protocol. If we wish to realize
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the broadcast protocol within a fixed number of rounds, we
have to strictly restrict the number of corrupted users t.

Classical results (e.g., [38], [39]) show that achieving
broadcast among n users incurs Ω(t)-round complexity only
if the number of corrupted users t satisfies t < n/3. For-
tunately, more recent results based on randomization tech-
niques show that it is achievable in expected constant round
time for t < n/2, i.e., in an honest-majority setting [40]–
[42]. Unlike Lindell and Waisbard’s scheme, our protocol
that relies on broadcasting does not allow the adversary to
have an index set J such that |J | ≥ n/2. In an authenticated
setting like our protocol, restricting to a computationally
bounded adversary allows a limit of t < n. Therefore, because
of the different assumptions in the communication model,
we need to devise a new group-setup protocol.

A second reason relates to practical matters. To justify
our assumption that |J | < n/2 for any index set of cor-
rupted users J , we need to guarantee the probability that
the adversary can create a set J whose cardinality |J | ≥ n/2
is very small, i.e., negligible in λ. However, our new protocol
should not only consider the strong assumption described
above, but also ensure that the impact of our modification on
the probability of maliciously grouping should be minimal,
even under this assumption. For this reason, a new random
oracle H3 is added to our protocol. Because the output of
a random oracle is uniformly distributed, the additional
random oracle H3 makes it harder for the adversary to add
members to a group, as it would like.

We now compute the probability that an adversary can
maliciously generate a group Gj so that |Gj |=n, but half of its
member users are corrupted (i.e., n/2 users are malicious),
for some j ∈ [ng], where ng = bnu

n c. We mean by a “mali-
cious” group that the group contains at least n

2 malicious
users, with the number of honest users being less than
n
2 . This is clearly an undesirable case because ambiguity
with respect to users’ query terms will drastically increase,
particularly when the size of the group is not large.

The following theorem shows that the probability still
remains very small with respect to the security parameter λ.
We write the probability as P[MalGrp] in the theorem.

Lemma 1. Let nu be the total number of registered users,
and let t be the number of corrupted users. Let n be
the number of users in a group. For every positive
integer nu, n, t ∈ N, and for all PPT adversaries A, the
probability of a bad event is given by:

P[MalGrp] ≤ 2n

ng
·
(
nu − t
t

)n/2
·
(
t

nu

)n
,

where the number of groups ng = bnu

n c.

Proof: Let MalGrp denote the event that a group is
constructed by the adversary in such a way that the group

contains n
2 corrupted users. We then have:

P[MalGrp] =
1(ng

1

) · ( t
n/2

)(nu−t
n/2

)(nu

n

) =
1

ng
·
( t
ñ

)(nu−t
ñ

)(nu

n

)
=

1

ng
· t!

(t− ñ)!ñ!
· (nu − t)!

(nu − t− ñ)!ñ!
· (nu − n)!n!

nu!

=
1

ng
·
(
n

ñ

)
·

ñ−1∏
i=0

(t− i)
ñ−1∏
i=0

(nu − t− i)

n−1∏
i=0

(nu − i)

=
1

ng
·
(
n

ñ

)
·

ñ−1∏
i=0

(nu − t− i)

n−1∏
i=ñ

(t− i)
·
n−1∏
i=0

(
t− i
nu − i

)

≤ 2n

ng

(
nu − t
t

)ñ ( t

nu

)n
The last inequality is derived from

( k
εk

)
≤ 2kH(ε), where

H(ε) = −ε lg ε − (1 − ε) lg(1 − ε) for 0 ≤ ε ≤ 1, and we
assume that 0 lg 0 = 0, for convenience. This completes the
proof of the theorem.

For example, consider the case that nu = 106, t = 103,
and n = 30. For this case, we have the probability of a mali-

cious group being smaller than 30·109

106 ·
(

106−103

103

)15
·
(

103

106

)30
,

which approximates to 10−40. It could be argued that this
probability is insufficient to protect the users’ privacy. How-
ever, because the adversary would need to create a mali-
cious group within seconds, we guess that the probability
would be meaningful in practice.

5.2 Group Manager
The architectural view of our PWS protocol, described con-
ceptually in Section 1.2, is depicted as in Figure 4. The figure
can be considered as a snapshot following construction of a
group Gj of size n using the group-setup protocol specified
in the previous section.

Because the problem we handled in the previous section
was the matter of an algorithm to create a group of proper
size, it is sufficient to find an algorithm and to analyze it.
However, there remain two crucial issues to be addressed.
One issue is the maintenance of a set of group managers,
and the second is the election of a representative among
them.

Concerning maintenance, our idea is to employ the
functionality of a PBB. In a cryptographic sense, a PBB
is equivalent to a broadcast channel, which has already
been discussed in Section 5.1. Specifically, the PBB is used
by users to announce their messages. That is, a message
can be posted by any user and read by any other one.
By saying that a message is “published”, we mean that
the message appears on the PBB. Moreover, the published
message can not be deleted or modified once posted. Next,
a natural scenario would be that perhaps a dozen users
would undertake voluntarily the role of group manager.
They could construct a pool of group managers using the
group construction protocol shown in Figure 3.
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Fig. 4. Overall communication architecture with grouping

The second issue is the election of a group manager
Gi from the pool {G1, . . . , GN}. Leader election plays an
important role in the design of fault-tolerant applications.
There is an extensive literature about this issue (e.g., [43]–
[45]) and refer to reference [46] for a detailed survey of
recent results.

Intuitively, a leader can operate as a central coordinator
who enforces consistent behavior among users. However, in
our setting, the leader of group managers does not matter
if there exists at least one honest group manager. In other
words, a malicious group manager would be allowed to be
the leader. Therefore, we can opt for an auto-election mech-
anism to choose the group leader after the pool containing
honest group managers has been constructed.

For the sake of security, we can use the cryptographic
leader-election protocol designed by Katz and Koo [35].
Their scheme is built on a moderated VSS, which adds an
extra entity, called a moderator, to a standard VSS. Their
moderated VSS scheme in an authenticated setting (i.e., as-
suming a public-key infrastructure) requires only a constant
number of rounds, tolerating tG < N/2 malicious group
managers [35, Corollary 2]. Specifically, the moderated VSS
protocol requires thirteen rounds of interaction. In addition,
they provide a two-phase constant-round protocol for leader
election in the same setting, where the round complexity
of each phase is determined by the underlying moderated
VSS [35, Corollary 4].

Much simpler leader election protocols could be em-
ployed for efficiency reasons. For example, assuming a
trusted leader, we could adapt an efficient variant of Toueg’s
constant-round protocol [47].

5.3 Other Considerations

We now identify issues that may arise in deploying our
protocol in a real scenario, discuss the privacy that our
protocol covers, and address some other issues.

Group size. As discussed in Lemma 1, our main protocol
provides privacy that depends on the group size n. That is,
the larger the group, the stronger the privacy that users can
obtain. However, considering the quality of the Web search
service, we need to limit the size of groups according to
the computing power of users’ machines and the acceptable
level of latency. Our example implementation, which used
the El Gamal encryption scheme over 1024-bit p and 512-bit
q, showed that, for 34 ≤ n ≤ 36, a group manager required
approximately 1.02 seconds to submit a list of queries. We
conducted this experiment on an iMac with a 3.4 GHz Core
i5 CPU and 16 GB memory.

Static and Dynamic Groups. The discussion of this matter
depends on whether a user or a group manager joins a
group. For users, it might appear that frequently changing
groups would achieve higher privacy. However, if a unique
user identity such as the IP address is repeatedly used in
different groups, the adversary might detect this and have
a better chance of designating the user. Therefore, changing
groups, in itself, could lead to loss of privacy.

The primary reason for maintaining multiple group
managers is to distribute the key pair in the El Gamal
encryption scheme. No subsets of group managers whose
size is less than a fixed threshold can then learn user plain-
texts. Both cases seem to imply that any solution involving
dynamic groups might be unnecessary in our setting.

6 LITERATURE REVIEW

Balsa et al. divide existing PWS protocols into three classes
according to the underlying technique used to obtain anony-
mous channels [1]. That is, if a PWS solution employs a
proxy server to submit their query words on behalf of users,
it is considered a proxy-based technique. However, the
server machine can easily become a target of attackers and
has single-point-of-the-failure limitations. A second class
of PWS solutions enables users to submit a set of queries
so that the real query is well buried within the set. Balsa
et al. calls this obfuscation-based PWS. Its technical core
is the method that embeds a real query into the set and
the indistinguishability level achieved by the method. The
third class, to which our PWS solution belongs, eliminates
the possibility of linkability between users and their query
terms by using cryptographic tools. We call these schemes
cryptography-based PWS (CB-PWS), following Balsa et al.’s
naming convention.
Proxy-based PWS. The first approach is through the use
of an anonymous proxy (e.g., [2]–[4]). Users can expect
that anonymizers will prohibit the creation of user profiles
through query unlinkability. There are several options in
this category, from simple mechanisms achieving a low level
of anonymity in Web searches to more reliable but more
complicated systems based on onion routing, [48] such as
the Tor network. [49] However, the effectiveness of sim-
ple solutions is clearly limited. In addition, as highlighted
by [8], Tor is not always easy to install and configure.
Furthermore, it is well known that the HTTP requests over
Tor can become very slow. [4] For example, it takes 10
seconds on average to submit a query to Google even when
using paths of length 2 (the default length is 3).
Obfuscation-based PWS. Another approach to providing
privacy during Web search is based on a query obfusca-
tion technique (e.g., [5]–[7], [50]). The class of solutions
using query obfuscation involves blending the real queries
into a stream of fake queries so that Web search engines
cannot create an accurate profile. From a privacy point
of view, these obfuscation-based solutions have a critical
drawback, namely, that automated queries have features
that are different from real queries entered by a user, such
as randomness. The authors in [51] demonstrated a classi-
fier implementation that can distinguish real queries from
fake queries generated by TrackMeNot, [50] with a mean
misclassification rate of only approximately 0.02%.
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Cryptography-based PWS. The third class of solutions in-
volves using cryptographic algorithms such as public-key
encryption and shuffle. One of the main advantages of
CB-PWS systems over others is that they provide strong
privacy guarantees. In addition, they are not affected by
the misclassification issue and are generally faster than
anonymizer-based solutions. To our knowledge, the known
solutions can be found in [8]–[11]. Without loss of generality,
because we may consider Romero-Tris et al.’s scheme as
a malicious variant of Castellá-Roca et al.’s scheme, the
differences between the two schemes do not affect the round
complexity.

These known solutions utilize the basic idea that, after
joining a small group, each user encrypts the search query
and sends it to other group members. Then, according to
a predefined order, each user provides a shuffled list of
encrypted queries to his neighbor. The last user broadcasts
the final shuffled version. After group decryption, each user
obtains a set of queries, but cannot know who submitted
which query. As a result, Web search engines cannot build
accurate user profiles.

We note that the only approach that comes close to
achieving our requirements in the restricted setting is the
work by Kim et al. [11]. The authors proposed a round-
efficient CB-PWS scheme based on the notion of decom-
posable encryption. However, this approach significantly
restricts the length of plaintexts (e.g., to 3 or 4 bits) to be
encrypted, which does not lead to practical solutions to
the problem. We have provided a detailed evaluation and
analysis of existing CB-PWS solutions (see Section 4.2).

To our knowledge, the known CB-PWS constructions
either require O(n) rounds, where n is the number of
users [8]–[10] or, by significantly restricting the length of
messages to be encrypted, do not lead to practical so-
lutions. [11] Moreover, the solution in [11] requires Web
search engines to implement and run the protocols. How-
ever, search-engine service providers have no incentive to
implement costly protocols that they cannot profit from. As
yet, there are no known constructions of practical constant-
round CB-PWS systems.

7 SUMMARY AND ONGOING WORK

Web searches have been shown to be sensitive in many
cases. Any information leaked from search histories can
endanger user privacy. Search histories may contain health-
related data and other personal information, including, but
not restricted to, political or religious views and sexual
orientation data. For example, Google provides signed-in
users with personalized search results based on their search
and navigation histories. Furthermore, users typing search
queries in the Web interface are prompted with suggestions
derived from their search history. To this end, Google tracks
all Web searches performed by a signed-in user as well as
the target Web pages clicked from the search result page.

In this work, we present a constant-round CB-PWS pro-
tocol for protecting users’ privacy when a broadcast channel
is available. Our solution can be deployed easily in current
systems because it does not require any changes on the
service-provider side. However, further work is required:

• We are attempting to provide a full implementation
of our solution to demonstrate its practicability.

• We should improve the performance of the group-
manager aspect, particularly when the group mem-
bership is dynamic.
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for private information retrieval,” IEEE Transactions on Information
Theory, vol. 56, no. 9, pp. 4631–4642, 2010. pages 1, 12
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[29] R. Cramer, I. Damgård, and J. B. Nielsen, “Multiparty compu-
tation from threshold homomorphic encryption,” in Advances in
Cryptology-Eurocrypt, ser. LNCS 2045, B. Pfitzmann, Ed., 2001, pp.
280–299. pages 8

[30] J. Groth, “A verifiable secret shuffle of homomorphic encryptions,”
J. of Cryptology, vol. 23, pp. 546–579, 2010. pages 8

[31] C. Neff, “A verifiable secret shuffle and its application to e-
voting,” in ACM Conference on Computer and Communications Se-
curity, 2001, pp. 116–125. pages 8

[32] I. Damgård, “On Σ-protocols,” Lecture Notes, Computer Science
Department of University of Arrhus, 2002. pages 10
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