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This work addresses a basic problem of security systems that operate on very sensitive

information. Specifically, we are interested in the problem of privately handling numeric

data represented by rational numbers (e.g., medical records). Fully homomorphic en-
cryption (FHE) is one of the natural and powerful tools for ensuring privacy of sensitive

data, while allowing complicated computations on the data. However, because the native

plaintext domain of known FHE schemes is restricted to a set of quite small integers,
it is not easy to obtain efficient algorithms for encrypted rational numbers in terms of

space and computation costs. For example, the näıve decimal representation consider-
ably restricts the choice of parameters in employing an FHE scheme, particularly the

plaintext size.

Our basic strategy is to alleviate this inefficiency by using a different representa-
tion of rational numbers instead of näıve expressions. In this work we express rational
numbers as continued fractions. Because continued fractions enable us to represent ra-

tional numbers as a sequence of integers, we can use a plaintext space with a small size
while preserving the same quality of precision. However, this encoding technique requires

performing very complex arithmetic operations, such as division and modular reduction.

Theoretically, FHE allows the evaluation of any function, including modular reduction at
encrypted data, but it requires a Boolean circuit of very high degree to be constructed.

Hence, the primary contribution of this work is developing an approach to solve this

efficiency problem using homomorphic operations with small degrees.

Keywords: Continued fractions; Gosper algorithm; Rational numbers; Homomorphic en-
cryption.

1. Introduction

Consider the following scenario. There is a server that stores patients’ medical data,

and it has considerable computing power such that it can compute a predictive

∗The corresponding author
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model for each patient and inform patients on whether they are in the danger

range.

For example, a Cox model is a statistical technique for exploring the relation-

ship between the survival of a patient and several explanatory variables, and it

provides an estimate of the effect of treatment on survival after adjusting for other

explanatory variables. In addition, this technique allows us to estimate the hazard

(or risk) of death for an individual given their prognostic variables. The prognostic

variables are age, diabetes, smoking, systolic blood pressure, cholesterol, and HDL

cholesterol. For instance, in reference [1], the predictive model for females is given

by the function

Pr
Female

(Xi) = 1− 0.95012exp(
∑

i βiXi−26.1931) (1)

where Xi is the input for each risk factor, exp(·) is the exponential function, and

βi is the regression coefficient. Specifically, the regression coefficients for the model

for females are given by∑
i βiXi = 2.32888 · logA+ 1.20904 · logC−

0.70833 · logH + 2.76157 · logB+

0.52873 · S + 0.69154 ·D
(2)

where A denotes the age, C denotes the cholesterol level, H denotes the HDL

cholesterol level, B denotes the systolic blood pressure, and D = 1 if diabetes exists

and S = 1 if an individual is a smoker; otherwise, D = 0 and S = 0.

To make this practical scenario work in the real world, we need to satisfy the

following two basic requirements before other technical ones.

Privacy. For privacy reasons, one appealing approach is to have patients keep all

medical data encrypted if possible. However, because decryption on the server side

could cause a loss of privacy, we need to apply an encryption scheme that allows

homomorphism to such sensitive data such that computations on its encryptions do

not require decryption.

Inter-domain conflict. Again, let us examine Eq. (2). Due to the privacy re-

quirement, we now need to compute the equation on the ciphertext domain of an

underlying encryption scheme rather than its plaintext domain. The key point here

is that the underlying encryption scheme should be able to take as input rational

numbers such as HDL cholesterol values, but in general, encryption schemes are

restricted to encrypt group or ring elements.

To resolve this conflict between the domain of a target function and the domain

of an encryption scheme, message encoding before encryption appears to be the

best choice. One widely accepted approach to encode a rational plaintext r is to

use decimal expansion. Let r ∈ Q be a rational number that has `-digit below a

decimal point. Given a rational number r = r0.r1r2 · · · r`, an encryption scheme

with decimal expansion first converts each digit ri into xi = ri ·10i−1 ∈ Z, 1 ≤ i ≤ `
and then encrypts each xi. This implies that the plaintext space of the encryption

scheme must be large to represent an integer x` = r` · 10`−1. For example, suppose
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that a predictive algorithm uses a rational number r = 0.1357908642. Then, in this

case, x10 = 2 · 109 ≈ 231, and thus, a proper plaintext space superficially seems to

be Z231 .

However, if we think a little bit more about our choice of the plaintext space, we

see that Z231 is not always a correct one under decimal expansion. To explain why

this is so, suppose that a fully homomorphic encryption (FHE) scheme and a target

function f for evaluation are given. One may simply think that he only has to fix t

(e.g., t = 231) to the FHE’s plaintext space Zt. Apparently it is not the case. Because

the encryption scheme should perform modular reduction when an evaluation result

of f over FHE ciphertexts carries a plaintext larger than t, the plaintext space can be

determined only after estimating the target evaluation function. For example, when

we consider a proper plaintext space for encoding r = 0.1357908642, Z231 may not

be a good choice because we may have to encode 8 ·r. Specifically, 1357908642×8 =

10863269136 ≈ 234 and thus 10863269136 mod 231 should be performed. Hence, we

need to set t ≥ 234. The more are required the number of multiplications, the bigger

plaintext space should be chosen. In conclusion, a proper plaintext space depends

on a target evaluation function in order to avoid modular reduction.

Furthermore, since the size of the noise after homomorphic operations is pro-

portional to t, it may lead to an efficiency problem. For example, consider the

Brakerski-Gentry-Vaikuntanathan (BGV) scheme [3]. If Z2 is taken as the plain-

text space, one homomorphic multiplication consumes only one multiplicative depth

roughly. However, in the case of Z215 , we see that the same operation consumes two

multiplicative depths, when implemented by the HElib library [15].

Group homomorphic encryption (e.g., El Gamal [10] and Paillier [19]) can also

be considered. However, this type of encryption scheme is not suitable for bitwise

operations because it severely wastes their plaintext space. For example, consider

an equality check between two encrypted hematocrit values. In general, an equality

comparison cannot be efficiently performed over Paillier ciphertexts because equal-

ity test works on bit representations of group elements.

Taking two requirements and the two together, we need to provide a better way

of representing rational numbers to fit in homomorphic evaluations in the predictive

model such that multiplications by rational numbers are needed. In this work, our

technical goal is to represent rational numbers while using a small-sized plaintext

space, but without losing its original precision.

Overview of our idea. Restricting our interest to the prediction model, such as

Eq. (2) leads to the below observations that will be helpful to understand our design

directions.

(1) Carefully looking into specific target functions used in the practical side,

coefficients and input values are given in rational numbers after truncating

their lower digits, but not in real numbers.

(2) Regression formulas of our interest perform multiplication between the en-

crypted medical data and some known constant values (e.g., coefficients
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2.32888 and 1.20904 of Eq. (2)). This makes us free from performing mul-

tiplication of two encrypted medical data.

Given a rational number r, there exist an unique integer q, called the integral

part of r, and an unique rational s ∈ [0, 1), called the fractional part of r, such

that r = q+s. Roughly, continued fractions (CFs)a can represent the same rational

numbers using only relatively quite small integers when their integral part is also

a small integer. Thus we restrict our attention to how to efficiently handle rational

numbers whose integral part is small, in a private manner. In this setting, we expect

that it can provide significant efficiency gains, even in the case where elements of

the set should be encrypted, with respect to the size of ciphertexts and later homo-

morphic arithmetic operations. For example, consider the same r = 0.1357908642

as above. Then, we can represent the r as a sequence of integers

[0; 7, 2, 1, 2, 1, 12, 2, 2, 7, 7, 2, 2, 1, 11, 2]

and indeed, it is a sequence of only 4-bit integers. That is, we can take Z24 rather

than Z231 as the plaintext domain. As a result, if the integral part of a rational

r is at most a length of ` bits, then it is expected that one can take Z2` rather

than Z2`+31 as the plaintext domain. We will discuss how to obtain each integer

of the sequence in later sections. Accordingly, when we wish to homomorphically

evaluate a function f on encrypted data, we first encode all inputs into a sequence

of small integers and encrypt each small integer under an underlying FHE scheme.

This allows the FHE scheme to be instantiated with a small-sized plaintext space.

We notice that the second observation states that the coefficients of f need not be

encrypted, unlike the input values.

Regarding a class of target functions with which we can efficiently deal, we will

focus on a linear multivariate polynomial f . Even though all partial quotients are

bounded after arithmetic operations (e.g., see [6, 20]), dealing with polynomials of

higher degree requires to run with a large-sized plaintext space. Then we can no

longer utilize benefits of using FHE while enjoying a proper level of efficiency. This

is the primary reason for only considering rational polynomials of low degree at the

cost of applicability’s limitation. For these reasons, our solution may not cover a

wide range of applications running on FHE.

When encoding a rational number into CF, we use the so-called Gosper al-

gorithm [13]. However, some nontrivial problems arise when one has to perform

computations on encrypted rational numbers that were encoded by the algorithm.

The essential technical obstacle among these problems is that the algorithm requires

modular arithmetic and division. Theoretically, FHE can compute arbitrary func-

tions on encryptions, but in practice, both operations are fairly difficult to efficiently

implement when their operands are ciphertexts. Throughout the remainder of the

aPrecisely speaking, we only consider finite and simple continued fraction. That is, the number of

partial quotients is finite and all partial quotients and the integral part are integers.
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paper, we thus seek a solution to replace modular arithmetic and division with

other operations with a small degree, i.e., efficiently realized. Indeed, we develop a

variant of Gosper algorithm that works on ciphertexts of rational numbers encoded

using the CF technique. Throughout the paper, by degree, we mean the multipli-

cation depth required to perform a function.b Roughly, given a circuit associated

with an FHE scheme, its multiplication depth means the total number of reduced

levels in the circuit being homomorphically evaluated. We will formally define it

later (see Definition 3 in Section 3.3).

Summary of our results. In summary, our contributions are as follows:

(1) We show that we can enable to divide an integer by an encrypted integer

with a special case of Gosper algorithm. Further, we can compute a linear

fractional transformation evaluation whose variables are rational numbers

represented by continued fractions. In particular, the computational com-

plexity for evaluating the linear fractional transformation is almost the

same as the special case of Gosper algorithm, regardless of polynomial’s

coefficients.

(2) We address some efficiency challenges posed by using the Gosper algorithm

during the encoding of rational numbers. Specifically, modular reduction

over ciphertexts is very expensive in terms of multiplicative depth and thus

we develop an approach to substitute a combination of other operations

requiring a quite less multiplicative degree for modular reduction. We apply

this technique to the original Gosper algorithm.

The outline of the paper. We firstly provide a survey of closely related works

in Section 2. Section 3 provides a series of materials for better understanding our

work. We describe our main result in Section 4 and Section 5, along with analysis

of correctness and computational costs.

2. Study of the Existing

As related works, we first investigate Graepel et al.’s result [14] and Bos et al.’s

work [1]. In both works, the authors first fix a desired precision, multiply through

by a fixed denominator, and round to the nearest integer because any real number

can be approximated by rational numbers to arbitrary numbers and subsequently

encoded to ring elements. However, this approach to represent real numbers has

some drawbacks. When two encoded rational numbers are multiplied, it should be

performed without any modular reduction and thus the plaintext space of FHE

must be sufficiently large.

The most closely related work to the present one is Jäschke et al.’s scheme

and Costache et al.’s scheme [8]. In [17], Jäschke and Armknecht dealt with a

bOf course, the function should first be transformed into a binary Boolean circuit or an arithmetic

circuit.
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particular encoding for rational numbers in the FHE context. However, due to their

specialty of encoding, Boolean comparison on encrypted data of n-bit length should

be inefficiently implemented since O(n) multiplication depth is needed rather than

O(log n). More recently, the work of [8] investigated fixed-point arithmetic in ring-

based somewhat homomorphic encryption (SHE). However, this approach does not

allow to compute a reciprocal of encrypted data, nor does it support integer division.

3. Toolkits

In this section, we provide some basic materials to better understand the remainder

of the paper. Background of the two different fields is required: one is mathematics,

and the other is cryptography.

Notation. For readability, we introduce some notation and terminology for the rest

of the paper.

• A bar over some integer means that the integer is encrypted by an FHE

encryption algorithm E; x̄ = E(x) for x ∈ Z.

• A maximum of a continued fraction signifies that the largest integer among

its partial quotients, namely, for a continued fraction x = [x0;x1, x2, . . .],

maxx := max
i
|xi|

• A continued fraction is encrypted means that each partial quotient of the

continued fraction is encrypted. For a continued fraction x = [x0;x1, x2, . . .],

E(x) := [E(x0);E(x1),E(x2), . . .]

which can be abbreviated as x̄ := [x̄0; x̄1, x̄2, . . .].

• For a rational number x, we denote its fractional linear transformation a+bx
c+dx

for a, b, c, d ∈ Z by

a b
c d

.

• For two algorithms A and B, A(z) means that A takes as an input z and

B ◦ A(z) means call A and B in order as an input z.

3.1. Mathematical Tools

A set of integers is closed under addition and multiplication, but not division. How-

ever, there are some methods representing rational numbers to integers, e.g., con-

tinued fractions and decimal representations. Continued fractions are more mathe-

matically natural representations of rational numbers than decimal representations.

First of all, the continued fraction representation for a rational number is finite, but

decimal representation for a rational number may be infinite. Moreover, every ratio-

nal number has an unique continued fraction representation with some restrictions.

The successive approximations generated in finding the continued fraction repre-

sentation of a number, i.e., by truncating the continued fraction representation, are

in a certain sense (described below) the best possible. Therefore, it has occasionally
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been considered to be a great tool in mathematics and it has been researched for a

long time in a variety of topics. Here, we rephrase only those related to our works.

Continued fractions. A continued fraction can be obtained through an iterative

process of representing a number as the sum of its integer part and the reciprocal of

remaining part, and then writing the remaining part as the sum of its integer part

and remaining part, and so on. In other words, given a real number x, we have

x = x0 +
1

r0
= x0 +

1

x1 + 1
r1

= x0 +
1

x1 + 1
x2+ 1

r2

= · · · (3)

where ri > 1 for all i and use x = [x0;x1, x2, . . .] to denote this. Note that x0 can

be any integer, but for i ∈ N, xi must be positive and with this restriction, the

continued fraction of x is unique. We can define further terminologies related to

continued fractions.

Definition 1 ([16]) For a continued fraction x = [x0;x1, . . .],

• xi is called a partial quotient of x for all i.

• A continued fraction x is finite if the number of partial quotients of x is

finite.

Keeping this definition in mind, the following theorem states that the corre-

spondence between rational numbers and a finite continued fraction [a0; a1, . . . , an]

with an integer a0 and positive integer ai for i > 0 and an > 1 is one-to-one. We

consider the situation that an integer is divided by another integer, so only rational

numbers are considered in this paper.

Theorem 1 ([16]) Any rational number can be represented as a finite continued

fraction and the continued fraction representation is unique when the last partial

quotient is larger than 1.

Theorem 2 ([16]) Let α = [a0; a1, a2, · · ·] and pi/qi = [a0; a1, · · · , ai]. For any

rational number a
b with a ∈ Z and b ∈ N, and 1 ≤ b ≤ qi,

∣∣∣piqi − α∣∣∣ ≤ ∣∣ab − α∣∣ , with

equality if and only if a/b = pi/qi.

Theorem 2 indicates that pi/qi is the best possible approximation to α among all

rational numbers with the same or smaller denominator. In other words, a continued

fraction is the best approximation tool of rational numbers.

Lastly, we give an assertion that the partial quotients have a small size in the

bit length. With some restrictions in Theorem 1, continued fractions and rational

numbers have one-to-one correspondence, however, one can find two different con-

tinued fractions for a rational number when these restrictions are weaken. For some

k ∈ N, we can easily derive that [. . . , ak + ak+1, . . .] = [. . . , ak, 0, ak+1, . . .] because

1

ak + ak+1 + 1
ak+2

=
1

ak + 1
0+ 1

ak+1+ 1
ak+2

(4)
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For this reason, we can insist that one can find a continued fraction with bounded

partial quotient for an arbitrary rational number even though the number of partial

quotients gets longer. Thus, a user working with rational numbers can determine

the maximum of partial quotients, considering his environment. For example, if suf-

ficient space is available, then he may reduce the maximum size of partial quotients

at the cost of increasing the number of ciphertexts.

3.1.1. Arithmetics over CF Representations

Given two rational numbers x and y represented by decimal expansion, it is easy to

compute z = x+y, as we have learned. However, we have not learned an arithmetic

algorithm if one of the rational numbers is given by continued fraction form. In 1972,

Bill Gosper [13] proposed the general arithmetic algorithm on continued fractions.

This algorithm enables arithmetics between two continued fractions as well as a

continued fraction and a rational number. We recall a brief description of Gosper

algorithm.

Gosper algorithm. The goal of Gosper algorithm is, for a real number x, comput-

ing a+bx
c+dx for a, b, c, d ∈ Z because every elementary single operation of two rational

numbers, such as addition, subtraction, multiplication and division, can be replaced

by a linear fractional transformation. Of course, it can also represent various equa-

tions in addition to the elementary single operations, and thus, we can calculate

more complex arithmetic than elementary operations.

Suppose that x is a rational number with a continued fraction form and that

z := a+bx
c+dx for a, b, c, d ∈ Z. The main idea is that z has a value between a

c and b
d

for almost everywhere, and thus, if a
c and b

d have the same integer part, the integer

part of z is bac c = b bdc; otherwise, z requires more information about x. Because

z behaves differently for each case, it requires two sub-algorithms, say InTake and

OutTake. For convenience, we denote z by
 a b

c d

.

The following algorithm (see Algorithm 1) is the Gosper algorithm for an arith-

metic algorithm on continued fractions using the above idea. For each iteration, call

either OutTake or InTake according to the condition of whether two truncations are

the same.

The details of OutTake algorithm. It occurs when z exactly knows its own

integer part, as we stated above. The integer part of z should be q := b z0z2 c if the

value of the flooring two ratios is the same. Thus, z can determine its own integer

part by comparing the two values, and when they have the same value, z must emit

q and becomes the reciprocal of z − q.
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Algorithm 1 Gosper Algorithm

Input: x = [x0;x1, x2, . . .], f(X) = a+bX
c+dX

Output: f(x) = [y0; y1, y2, . . .]

1:

 z0 z1
z2 z3

←  a b
c d


2: i← 0, j ← 0

3: while z2 and z3 are not all zero do

4: q1 ← bz0/z2c, q2 ← bz1/z3c
5: if q1 = q2 then

6: yi ← q1

7:

z0 z1

z2 z3

←  z2 z3

z0 − z2yi z1 − z3yi

 /* InTake */

8: i← i+ 1

9: else

10:

z0 z1

z2 z3

← z1 z0 + z1xj
z3 z2 + z3xj

 /* OutTake */

11: j ← j + 1

12: end if

13: end while

14: return [y0; y1, y2, . . .]

Let z′ = 1
z−q . Then,

z′ =
1

z − q
=

(
a+ bx

c+ dx
− q
)−1

=

(
a− cq + bx− dqx

c+ dx

)−1

=
c+ dx

a− cq + (b− dq)x
=
 c d
a−cq b−dq

 (5)

Because a = cq + a mod c, a mod c = a − cq; thus, OutTake actually performs the

modular arithmetic. In summary, if z =
 z0 z1
z2 z3

 knows its own integer part, then

it becomes  z2 z3

z0 mod z2 z1 mod z3

 (6)

The details of InTake algorithm. It occurs when z does not exactly know its

own integer part. If the value of the two ratios is not the same, then z cannot

determine which integer is correct, and thus, z requires more information of x and

thus requests a term from x. In this case, additional information of x is its partial

quotient.

Let x = p+ 1
x′ for some x′. Then,

z =
a+ bx

c+ dx
=
a+ b(p+ 1/x′)

c+ d(p+ 1/x′)
=
b+ (a+ bp)x′

d+ (c+ dp)x′

=
 b a+bp
d c+dp

 (7)
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In summary, if z =
 z0 z1
z2 z3

 requests more information from x and obtains p,

then it becomes
 z1 z0+z1p
z3 z2+z3p

. Additionally, InTake takes a partial quotient of x one

at a time. Because

· · ·+ 1

xn
= · · ·+ 1

xn + 1
∞
, (8)

it is a fact that [ , . . . , xn] = [ , . . . , xn,∞]. Note that∞ is just a symbolic of the last

partial quotient of any rational number and so we do not need to store and encrypt

∞. When InTake takes an input ∞, z =
 z0 z1
z2 z3

 becomes
 z1 z1
z3 z3

 because b · ∞
and d ·∞ dominate any a and c, respectively; thus, two columns of z always behave

in the same way after taking ∞. This implies that z always has the same integer

part, and thus, x =∞ is the last input of InTake.

A toy example. We will provide a brief example of how this algorithm actually

works. Let x = 13
11 = [1; 5, 2] and f(X) = X + 1

2 = 1+2X
2 .

1 2

2 0

 InTake

x0 = 1

2 3

0 2

 InTake

x1 = 5

3 17

2 10


OutTake

y0 = 12 10

1 7

InTake

x2 = 2

10 22

7 15

OutTake

y1 = 1

7 15

3 7


OutTake

y2 = 2 3 7

1 1

 InTake
x3 =∞

7 7

1 1

 OutTake

y3 = 7

1 1

0 0


Fig. 1. A toy example of Gosper algorithm

Because OutTake yields y0 = 1, y1 = 1, y2 = 2 and y3 = 7, y = f(x) =

[y0; y1, y2, y3] = [1; 1, 2, 7] = 37/22. It is trivial that 13/11 + 1/2 = 37/22 and

thus we can verify this algorithm works correctly in this case.

3.2. Fully Homomorphic Encryption

An FHE scheme, denoted by FHE = (Kg,E,D,Ev), is a quadruple of probabilistic

polynomial-time algorithms, as follows.

Key generation. The algorithm takes the security parameter λ and outputs a public

encryption key pk, a public evaluation key ek and a secret decryption key sk.

We write the algorithm as (pk, ek, sk)← Kg(1λ) and assume that the public key

specifies the plaintext space P and the ciphertext space C.

Encryption. The algorithm x̄ ← Epk(x) takes the public key pk and a message

x ∈ P and outputs a ciphertext x̄ ∈ C.

Decryption. The algorithm x∗ ← Dsk(x̄) takes the secret key sk and a ciphertext x̄

and outputs a message x∗ ∈ P.
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Homomorphic evaluation. The algorithm takes the evaluation key ek, a function

f : ({0, 1}∗)n → {0, 1}∗, and a set of n ciphertexts x̄1, . . . , x̄n and outputs a

ciphertext x̄f , denoted by x̄f ← Evek(f, x̄1, . . . , x̄n).

Concrete instantiation and security. In 2009, since Gentry’s first secure FHE

scheme from ideal lattices [11], various studies [7, 9, 21] have been presented on con-

structing efficient FHE schemes. However they have fairly poor performance. As

a solution of efficient FHE, Brakerski and Vaikuntanathan [4] introduced the con-

cept of leveled FHE schemes which allows the evaluation of functions of at most a

pre-determined multiplicative depth, instead of arbitrary functions. Shortly after,

Brakerski, Gentry, and Vaikuntanathan [3] proposed a leveled FHE scheme over

polynomial rings, which has significantly improved performance over the previous

schemes. Therefore, there are several good candidates for instantiating FHE; exam-

ples include the BGV scheme [3] and Bos et al.’s scheme [2]. We notice that our

technique can work on any FHE scheme.

To our knowledge, Bos et al.’s scheme is efficient when the plaintext space is

small because it is scale-invariant and its ciphertext consists of only one single ring

element. However, since an implementation of the BGV scheme is available in an

open source library, named HElib [15], it has been widely deployed by a variety of

applications. For the purpose of better performance, we recommend the use of an

FHE scheme supporting SIMD-type (single-instruction multiple-data) operations

and the Frobenius map in a depth-free manner.

An FHE scheme is said to be semantically secure if it achieves indistinguisha-

bility against chosen plaintext adversaries. We use a widely known formulation of

semantic security [12], defined as follows.

Definition 2 (Semantic Security) An FHE scheme is semantically secure if for

any polynomial-time adversary A, it holds that

|Pr[A(pk,E(pk,m0)) = 1]− Pr[A(pk,E(pk,m1)) = 1]|

is negligible in security parameter λ where Kg(1λ) → (pk, ek, sk) and m0,m1 ∈ P

are chosen by the adversary A.

Privacy of CF-based arithmetics against a semi-honest server follows from the

semantic security of an underlying FHE scheme. Thus, the security proof is straight-

forward and we can omit it.

3.3. Circuit Construction of two Main Submodules

We provide a brief description of underlying circuits for our construction. The below

two circuits are used in replacing modular reduction with cheaper operations in

terms of multiplicative depth. Multiplicative depth has a significant effect on the

performance, and thus it plays an important role in terms of complexity.
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Definition 3. Multiplicative depth of the circuit under homomorphic encryption

is the total number of reduced levels in a circuit that is being evaluated homomor-

phically.

Greater-than comparison. For two n-bit integers, a greater-than circuit GT(x̄, ȳ)

outputs 1̄ if x ≥ y and 0̄ otherwise. This operation can be recursively defined as

follows:

GT(x̄, ȳ) = 1− c̄n−1,

where c̄i = (1 + x̄i) · ȳi + (1 + x̄i + ȳi) · c̄i−1 for i ≥ 1 with an initial value c̄0 =

(1 + x̄0) · ȳ0.

It is easy to see that since cn−1 has degree n+1, it has dlog(n+1)e multiplication

depth. Moreover, a näıve construction of the circuit requires n2+n
2 homomorphic

multiplications. However, by carefully applying SIMD operations, the circuit can

be improved to require only 2n−2 homomorphic multiplications (see reference [5]).

In this case, the circuit has a multiplicative depth of dlog ne+ 1.

Full adder. Let x and y be n-bit integers. We then obtain two ñ-bit integers by

padding zeros on the left for an integer ñ > n. We define a full-adder of size ñ,

denoted by FA, in a recursive manner as follows:

FA(x̄, ȳ) = (z̄0, z̄1, . . . , z̄ñ−1)

where a sum z̄i = x̄i + ȳi + c̄i−1 and a carry-out c̄i = (x̄i · ȳi) + ((x̄i + ȳi) · c̄i−1) for

1 ≤ i ≤ ñ− 1 with initial values z̄0 = x̄0 + ȳ0 and c̄0 = x̄0 · ȳ0. The more important

thing with respect to efficiency is that we have an integer addition circuit of depth

dlog(ñ−2)e+1 if an underlying FHE scheme supports SIMD operations and depth-

free Frobenius map evaluation [5]. Indeed, while its näıve construction of the circuits

incurs (ñ3− 6ñ2 + 8ñ)/6 homomorphic multiplications, its optimized constructions

requires only 3ñ− 5 homomorphic multiplications.

Even though these primitive circuits are designed to merely process encrypted

integers, because our solution encodes rational numbers as a sequence of small

integers (i.e., partial quotients) and works on their encryptions, we can assemble

them into our solution without extra computational cost.

4. Basics

In a nutshell, our main goal is to make the Gosper algorithm, which is originally

designed to run in the clear, work over FHE ciphertexts, and it will be described

in Section 5. But before, we deal with a simple case in which the Gosper algorithm

takes as input an encrypted integer but not rational number. By “simple” we deal

with only a CF whose partial quotients are a singleton. Then we will return the

main topic after verifying our idea via the case study.

Running Gosper algorithm on FHE settings. When running Gosper algo-

rithm on FHE ciphertexts, there are two main technical challenges. As shown in
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Algorithm 1, the first challenge is that Gosper algorithm needs to perform mod-

ular arithmetic over encrypted partial quotients, while computing an output in a

CF representation. Recall that Eq. (6) in OutTake requires to perform the modular

reduction operation.

It is obvious that modular arithmetic of integers in the clear is quite easy to

compute. However, because performing modular arithmetic requires to repeatedly

invoke division by integer, it is non-trivial to run the algorithm on FHE cipher-

texts. Of course, FHE theoretically enables to evaluate arbitrary functions at FHE

ciphertexts. However, there is no efficient way of performing divisions between two

FHE ciphertexts in the practical sense. To address this problem, we need to develop

an efficient way for dividing an integer by an encrypted integer. Consequently, we

will focus on developing an efficient way to perform modular arithmetic on FHE

ciphertexts later in the section.

The second challenge is that Gosper algorithm needs to evaluate a conditional

branch on encryptions. Specifically, the result of a conditional expression (if-then-

else) is used to determine which sub-algorithm (i.e., either InTake or OutTake)

should be invoked. However, we can solve this problem by modifying the Gosper

algorithm so that the invocation of sub-algorithm can be pre-determined.

4.1. Efficient Modular Arithmetic over FHE Ciphertexts

To our knowledge, there are no efficient division algorithm and thus, modular arith-

metic algorithm over FHE ciphertexts. As mentioned above, however, the OutTake

sub-module in the Gosper algorithm requires modular arithmetic. For efficiency rea-

sons, modular arithmetic should be replaced by different operations of low degrees.

Our key idea for an alternative to modular arithmetic is subtracting a modulus

while repeatedly applying greater-than comparison circuit. Let a be an integer and

b be a modulus. The modular reduction of a with respect to modulus b can be

done by subtracting b from a until the difference is smaller than b. We have a GT

circuit that allows to compare two encryptions in a bit-by-bit manner. Furthermore,

the circuit has a multiplicative depth of dlog ne + 1 where n is the bit length of

input plaintexts. As a result, the remaining issue is to determine the number of

homomorphic subtractions required for this procedure.

The following theorem that we present here is needed for ensuring the efficiency

of our approach. More formally, Theorem 3 indicates that every partial quotient is

bounded by denominator and numerator and then, with the boundedness, modular

arithmetic can be replaced by bounded invocations of the GT circuit, which requires

a quite smaller multiplicative depth than that of a division circuit.

Theorem 3. Let x = [x0;x1, . . . , xn−1] be a continued fraction of p/q, where α ∈ Q
and xi, p, q ∈ Z. Then,

log x0 + log x1 + · · ·+ log xn−1 < log p

log x0 + log x1 + · · ·+ log xn−1 < log q
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Proof. Let x = [x0;x1, . . . , xn−1], where x ∈ Q, xi ∈ Z and its convergents Ci =

[x0;x1, . . . , xi] = pi/qi. By mathematical induction on i, we can easily derive that

the numbers pi and qi can be obtained by the recurrence

pi = xipi−1 + pi−2 (9)

qi = xiqi−1 + qi−2 (10)

with initial conditions p0 = x0, p−1 = 1, q0 = 1, and q−1 = 0. We can rewrite Eq. (9)

and Eq. (10) with a matrix as follows.pi pi−1

qi qi−1

 =

pi−1 pi−2

qi−1 qi−2

ai 1

1 0


=

pi−2 pi−3

qi−2 qi−3

xi−1 1

1 0

xi 1

1 0


= · · ·

=

x0 1

1 0

x1 1

1 0

 · · ·xi 1

1 0

 .

Therefore, for all i, pi and qi contain x0x1 · · ·xi and there is no negative term, which

implies that pi > x0x1 · · ·xi and qi > x0x1 · · ·xi. Taking a logarithm with base 2

for both inequalities, one can obtain which was to be demonstrated.

As an example, consider x = 13
11 = [1; 5, 2]. By Theorem 3, we can easily see that

log 13 > log 1 + log 5 + log 2 and log 11 > log 1 + log 5 + log 2.

4.2. Our Suggestion

An integer in decimal form is exactly the same as the value in CF expansion because

it has only one single partial quotient. Hence, the InTake sub-module is invoked

only once, but the OutTake sub-module is invoked multiple times. First, we need to

determine the number of invocations of OutTake. Then because OutTake outputs one

partial quotient per invocation, the number of invocations is equal to the number of

partial quotients. Second, we need to know the number of times that the GT circuit

is executed to compute each partial quotient. Indeed, in our suggested algorithm,

the outer loop is dependent on the number of invocations and the inner loop is

dependent on the number of times that we have to execute the GT circuit.

To develop a better understanding of determining the number of invocations

of OutTake, we look at the CF algorithm from a different angle. To this end, we

compare this with Euclidean algorithm. Let a and b be integers. For computing

gcd(a, b), Euclidean algorithm starts with a = q1b+r1. This is the same as bab c = q1

and a
b = q1 + r1

b , which is the first iteration of the CF algorithm. The next step in

Euclidean algorithm is b = q2r1 + r2. Similarly, it is also equal to b br1 c = q2 and
b
r1

= q2 + r2
r1

, which is the second iteration of the CF algorithm. Continuing in this
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way, we finally get to the last line of the Euclidean algorithm: rn−2 = qnrn−1 +0. In

the continued fraction, we have a
b = [q1, q2, . . . , qn]. This implies that the Euclidean

algorithm and the CF algorithm for rational numbers are essentially the same. Thus,

we can set the number of invocations of OutTake as the iterations n in the Euclidean

algorithm.

By Theorem 3, every partial quotient yi is bounded by denominator x and

numerator a. Since x is encrypted, we assume every partial quotient is bounded by

a in this paper. This assumption is again justified by Theorem 3.

Algorithm 2 Our Variant of Gosper Algorithm

Input: x̄, f(X) = a
X

Output: f(x̄) = [ȳ0; ȳ1, . . . , ȳn−1]

/* InTake */

1:

z0 z1

z2 z3

← a a
x̄ x̄


2: n← the number of ciphertexts of x̄

/* OutTake */

3: for i = 0 to n− 1 do

4: ȳi ← 0

5: tmp← z1

6: for j = 0 to a do

7: t̄← GT(tmp, z3)

8: ȳi ← ȳi + t̄

9: tmp← tmp− t̄ · z3

10: end for

11:

z0 z1

z2 z3

←  z3 z3

tmp tmp


12: end for

13: return [ȳ0; ȳ1, . . . , ȳn−1]

4.3. Analysis

In this section, we analyze the performance of Algorithm 2 in terms of the number of

multiplications. Note that multiplication over FHE ciphertext is the most expensive

operation.

Correctness. We first need to argue the correctness of our suggestion, which is

a special case (n = 1) of the Gosper algorithm. Algorithm 2 is fundamentally

based on the Gosper algorithm and thus we compare the Gosper algorithm and our

suggestion.

Without loss of generality, we may assume that two truncate ratios are different

and so InTake always incurs at first. This is the same procedure that the Gosper
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algorithm, but only differs whether or not encryption. After executing InTake, the

remaining step is to execute OutTake until the algorithm is over. OutTake requires

modular reductions, but we do not perform modular reductions because we know

the upper bound of partial quotients by Theorem 3. Modular reductions between a

and b (a > b) in the clear can be viewed as continually subtracting b from a until b

is larger and the number of subtract is quotient of a and b. In this sense, this should

be the same value compared with the output of OutTake, which corresponds to line

5 to line 10.

To sum up, every line of Algorithm 2 corresponds to the original algorithm

and every step does not influence the result. Therefore, the resulting value of our

suggestion is the same as the output of the Gosper algorithm which implies that

Algorithm 2 works correctly. This completes the proof of correctness.

Complexity. We provides an analysis of the computation complexity and space

complexity without relying on any asymptotic notation. We first examine compu-

tational complexity for Algorithm 2. For readability, the remainder of this section

does not use the bar notation, so instead of x̄, ȳ, etc. we will use x, y, etc.

Computational Complexity. In our algorithm, f(X) = a
X means z =

 a 0
0 1

. Thus,

for any encrypted rational number x̄, InTake does not require any multiplications

because it always becomes
 a a
x̄ x̄

 after taking ∞ as an input. During running one

instance of OutTake for z =
 z0 z1
z2 z3

, z1 mod z3 requires to perform a homomorphic

multiplications and to execute the GT circuit a times, because we replace modular

arithmetic by repeatedly executing the GT circuit. However, z0 and z1 in x do not

require these two homomorphic operations. Thus, the total number of operations for

running OutTake n times is a ·n homomorphic multiplications and a ·n invocations

of the GT circuit.

For each component of z, it requires to perform an
2 multiplications and GT

executions, respectively. Since the multiplicative depth for GT circuit is dlog ne+ 1,

the necessary multiplicative depth is log an
2 + n

2 (dlog ne+ 1).

Space Complexity. Let x be an integer and thus it has the only one partial quotient.

In our suggested algorithm, the storage requires that a ciphertext corresponding to

x and additional four ciphertexts corresponding to
 z0 z1
z2 z3

. Let γ denote a bit-size

of a ciphertext. Since the total number of ciphertexts are 5, the memory requires

that 5γ-bit to perform our proposed algorithm.

5. Gosper Algorithm on Encryptions

Section 4 indicates that a method for dividing an integer by an encrypted integer by

restricting an input to an integer. In this section, we treat more common situation

by allowing a rational number as an input and we can accomplish our main goal,

performing Gosper algorithm over FHE ciphertexts. By the reason, the FHE ci-

phertexts are rational numbers encoded and encrypted into CF representations. We

only examine a special case (the only one partial quotient) of the Gosper algorithm
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in Section 4, but we can also apply the same idea for general case (several number

of partial quotients) of the Gosper algorithm.

5.1. Tuning the Gosper algorithm

A rational number has a couple of partial quotients and thus InTake should be oc-

curred as many as the number of partial quotients. Then, according to Algorithm 1

described in Section 3.1.1, the order of OutTake and InTake is determined by the

condition of whether two truncations are the same. However, it is a big burden to

check the condition for each iteration, so prior to presenting the specific descrip-

tion of our construction, we slightly modify the Gosper algorithm to reduce the

complexity.

In this section, we will provide two theorems to reduce the complexity of the

Gosper algorithm by removing the condition of whether two rational numbers have

the same integer part, and these might be very helpful for our construction.

Theorem 4. If bac c = b bdc, then ba+bq
c+dq c = bac c = b bdc for any q ∈ Z.

Proof. Denote p = bac c = b bdc. Then,

a = cp+ r1 for 0 ≤ r1 < c (11)

b = dp+ r2 for 0 ≤ r2 < d (12)

For any q ∈ Z,

a+ bq = p(c+ dq) + r1 + r2q, (13)

and it implies that

a+ bq

c+ dq
= p+

r1 + r2q

c+ dq
(14)

Because 0 ≤ r1 + r2q < c+ dq,
⌊
a+bq
c+dq

⌋
= p. This completes the proof.

Theorem 5. For

z0 z1

z2 z3

 with b z0z2 c = b z1z3 c,

InTake ◦ OutTake(z) = OutTake ◦ InTake(z).

Proof. Suppose that z =

z0 z1

z2 z3

, q := b z0z2 c = b z1z3 c and the next input partial

quotient is p ∈ Z. First, we look at the left-hand side of the equality.

InTake ◦ OutTake(z) = InTake

( z2 z3

z0 − z2q z1 − z3q

)

=

 z3 z2 + z3p

z1 − z3q (z0 − z3q) + p(z1 − z3q)

 (15)
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By Theorem 4, q = bz1/z3c = b z0+z1p
z2+z3p

c. Thus, the right-hand side of the equality

becomes

OutTake ◦ InTake(z) = OutTake

(z1 z0 + z1p

z3 z2 + z3p

)

=

 z3 z2 + z3p

z1 − z3q (z0 + z1p)− q(z2 + z3p)

 (16)

Therefore, InTake ◦ OutTake(z) = OutTake ◦ InTake(z), and thus, we may conclude

the theorem.

By Theorem 4 and Theorem 5, Gosper algorithm can be slightly modified to

performing InTake for all partial quotients of input including∞ and then performing

OutTake, not alternative. Thus, the condition of whether two rational numbers have

the same integer part is no longer required.

5.2. Our Proposal

Although Gosper algorithm supports any continued fractions despite an infinite

continued fraction, we limit the input as a finite continued fraction and rational

numbers. That is, for some n ∈ N, any rational number is approximated by the first

n partial quotients.

Before describing our suggestion, we need to determine the number of invoca-

tions of the GT circuit for each partial quotient. For this pupose, we exploit the fact

that for a continued fraction x = [x0;x1, x2, . . . , xn−1], max a+bx
c+dx ≤ |ad−bc|·maxx,

where maxx = max{x0, x1, . . . , xn−1} [18]. Roughly, this indicates that one can

find the upper bound of partial quotients of resulting CF in terms of maximum par-

tial quotient and a coefficient of a fractional linear transform. Thus, the modular

reduction can be replaced by iteratively running only GT circuits as many as the

number of upper bound partial quotient. In Algorithm 3, we now provide a mod-

ified algorithm that enables to compute between rational numbers and encrypted

continued fractions.

5.3. Analysis

Similar to Section 4.3, we also analyze the correctness and performance of Algo-

rithm 3.

Correctness. Since Algorithm 3 is an extended version of Algorithm 2, the cor-

rectness and security are almost the same as Section 4.3; however, we modified the

algorithm by exploiting Theorem 4 and Theorem 5. Thus, we explain the reason

why our suggestion outputs the same result as Algorithm 1.

For z =

z0 z1

z2 z3

, Algorithm 1 invokes InTake when b z0z2 c = b z1z3 c and invokes

OutTake when b z0z2 c 6= b
z1
z3
c. Eventually, since z =

 z0 z1
z2 z3

 becomes
 z1 z1
z3 z3

 when
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InTake takes an input ∞, this condition should be satisfied at some point. Suppose

b z0z2 c is equal to b z1z3 c after executing InTake k1 times. Until this point, Algorithm 1

is exactly the same as Algorithm 3 except for their working domain. After executing

InTake k1 times, Algorithm 1 invokes a couple of OutTake and InTake depending on

the branch condition. Suppose OutTake and InTake are executed k2 and k3 times,

respectively. Then, by Theorem 5, we have

OutTake ◦ · · ·OutTake︸ ︷︷ ︸
k2

◦ InTake ◦ · · · InTake︸ ︷︷ ︸
k3

= OutTake ◦ · · ·OutTake︸ ︷︷ ︸
k2−1

◦InTake ◦ OutTake ◦ InTake ◦ · · · InTake︸ ︷︷ ︸
k3−1

= · · ·
= InTake ◦ OutTake ◦ · · ·OutTake︸ ︷︷ ︸

k2

◦ InTake ◦ · · · InTake︸ ︷︷ ︸
k3−1

Algorithm 3 Gosper Algorithm on Ciphertext Domains

Input: x̄ = [x̄0; x̄1, . . . , x̄n−1], f(X) = a+bX
c+dX

Output: f(x̄) = [ȳ0; ȳ1, . . . , ȳm−1]

1: `← maximum number of ciphertexts among x̄i

2:

z0 z1

z2 z3

← a b
c d


3: for i = 0 to n− 1 do

4:

z̄0 z̄1

z̄2 z̄3

← z1 z0 + z1x̄i
z3 z2 + z3x̄i


5: end for

6:

z̄0 z̄1

z̄2 z̄3

← z̄1 z̄1

z̄3 z̄3


7: m← the number of ciphertext z1

8: k ← |ad− bc|·2`
/* OutTake */

9: for i = 0 to m− 1 do

10: yi ← 0

11: rem← z0

12: for j = 0 to k − 1 do

13: t̄← GT(tmp, z2)

14: ȳi ← ȳi + t̄

15: rem← rem− t̄ · z2

16: end for

17:

z0 z1

z2 z3

←  z3 z3

rem rem


18: end for

19: return [ȳ0; ȳ1, . . . , ȳn−1]
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Continuing in this procedure for every InTake, we can obtain

OutTake ◦ · · ·OutTake︸ ︷︷ ︸
k2

◦ InTake ◦ · · · InTake︸ ︷︷ ︸
k3

= InTake ◦ · · · InTake︸ ︷︷ ︸
k3

◦OutTake ◦ · · ·OutTake︸ ︷︷ ︸
k2

which is exactly the same procedure in Algorithm 3. Therefore, Algorithm 3 outputs

the same result as Algorithm 1.

Complexity. We provides an analysis of the computation complexity and space

complexity without relying on any asymptotic notation. We first examine compu-

tational complexity for Algorithm 2. For readability, the remainder of this section

does not use the bar notation, so instead of x̄, ȳ, etc. we will use x, y, etc.

Computational Complexity. For any z, let us define z′ = InTake(z) =
 z′0 z

′
1

z′2 z
′
3

.

Because z′1 and z′3 are the output of multiplications and z0 + z1x and z2 + z3x are

stored during the next InTake in z′1 and z′3 positions, respectively, no multiplications

are required when z′0 and z′2 are stored. We would like to emphasize that no multi-

plications are required when an input of InTake is ∞. Hence, if z is the production

after performing InTake n+ 1 times including input as ∞, the left side of z, that is,

ciphertexts z′0 and z′2, should be supported by at least n − 1 multiplications, and

the right side of z, that is, ciphertexts z′1 and z′3, should be supported by n multi-

plications. Since the computational complexity of OutTake is the same as before, it

requires mk homomorphic multiplications and mk invocations of the GT circuit.

Since InTake requires n + 1 homomorphic multiplications, it requires a multi-

plicative depth of log(n + 1). OutTake requires exactly the same cost as that in

Algorithm 2; thus it requires a multiplicative depth of log mk
2 + mk

2 (dlogme + 1).

Therefore, in total, Algorithm 3 incurs a multiplicative depth of log(n+1)+logmk+
mk
2 (dlogme+ 1) = m− 1 + logm(n+ 1) +mk(dlogme+ 1).

Space Complexity. For a rational number x, suppose x has n partial quotients.

Through Gosper algorithm, the storage requires that n partial quotients and addi-

tional four integers corresponding to
 z0 z1
z2 z3

. In the same way, in our suggested

algorithm, it requires n ciphertexts corresponding to n partial quotients and an ad-

ditional four ciphertexts corresponding to
 z0 z1
z2 z3

. Let γ denote a bit-size of one

ciphertext. Since 4 + n ciphertexts are used, the memory requires that (4 + n)γ-bit

to perform Algorithm 3.

6. Conclusion

In this paper, we proposed an arithmetic algorithm that enables a constant divided

by an encrypted integer using a special case of the Gosper algorithm. Our algorithm

outputs a rational number in form of continued fractions form. Continued fractions

are a great tool for representing rational numbers to a sequence of small integers

and they are a best approximation of rational numbers. Further, we can extend our

suggestion to an arithmetic with a rational number. With our extending algorithm,
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addition, subtraction, and multiplication for encrypted rational numbers are possi-

ble, and linear fractional transformation also can be evaluated and the complexity

is almost the same because every step is the same for any arithmetic.

We leave it as a future work to provide a new version of the current implemen-

tation to which we apply SIMD techniques to construct underlying circuits and

further optimization techniques.
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